How to compute the mean of two disjoint region ?
2 ビュー (過去 30 日間)
古いコメントを表示
Suppose I have to fragment of an image J : J_out_1 et J_out_2.
J_out_1 = J(1:h,startj:i);
J_out_2 = J(1:h,k:endj);
I would like to compute the mean of the union of those two regions , is it possible ?
m_out = mean2(J_out_1 union J_out_2);
Thank you in advance
0 件のコメント
採用された回答
Guillaume
2015 年 5 月 1 日
編集済み: Guillaume
2015 年 5 月 1 日
m_out = mean([J_out_1(:); J_out_2(:)])
would be one way to do it assuming the image has only one colour channel. If they are RGB images:
m_out = mean([reshape(J_out_1, 1, [], 3), reshape(J_out_2, 1, [], 3)])
Note that if the two regions are the same size, you could just concatenate them without any reshaping (by colon or reshape).
その他の回答 (1 件)
Image Analyst
2015 年 5 月 1 日
Why not just take the weighted mean of the two?
numerator = numel(J_out_1) * mean2(J_out_1) + numel(J_out_2) * mean2(J_out_2)
denominator = numel(J_out_1) + numel(J_out_2)
m_out = numerator / denominator
If you want, you could make a binary image and use that as a mask to extract all the pixels in just the two regions:
binaryImage = false(size(J));
binaryImage(1:h,startj:i) = true;
binaryImage(1:h,k:endj) = true;
m_out = mean(J(binaryImage))
2 件のコメント
Image Analyst
2015 年 5 月 2 日
You're welcome. Those ways will also work even if the two subimages don't have the same number of rows. So "h" could be different for each image and they would still work.
参考
カテゴリ
Help Center および File Exchange で Image Processing Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!