Error imposing space-deri​vative-dep​endent boundary condition with solvepde using variable state.uy - Error: Unrecognized field name "uy".

4 ビュー (過去 30 日間)
I would appreciate any advice of the following. I am working with PDE Tool box solvepde and a 2d membrane simulation and struggling to impose a spatial-derivative-dependent absorbing a boundary condition on an edge. I am following PDE Toolbox documentation trying two different methods, one (commented out) below using a simple anonymous function and another using a matlab function. These methods work with variables like location.x, location.y, and state.time but seem to fail me with the spatial derivatives. Here is the code snippet in the setup preamble to calling solvepde:
case 3
alpha_absorb=1;beta_absorb=0.0;
m3=m_func(0,ribbonlength/2);
c3=c_func(0,ribbonlength/2);
v3=sqrt(c3(3)/m3);
% my_g= @(location, state,alpha,beta) (-alpha_y *v3.* state.uy +beta_y*state.uyy);
%
% g=@(location,state)(-alpha_y *v3.* state.uy +beta_y*state.uyy)
g=@(location,state) my_g(location, state,alpha_absorb,beta_absorb,v3);
applyBoundaryCondition(model, 'neumann', 'Edge', topEdgeID, "q",0,...
'g', g);
end
function absorb=my_g(location, state,alpha_absorb,beta_absorb,v3)
n1=1;
nr=numel(location.x);
absorb=zeros(n1,nr);
absorb(1,:)=(-alpha_absorb *v3.* state.uy +beta_absorb*state.uyy);
end
For the method shown, solvepde throws the following error ( and the commented out anonymous functio method throws a similar error)
Unrecognized field name "uy".
absorb(1,:)=(-alpha_absorb *v3.* state.uy +beta_absorb*state.uyy);
g=@(location,state) my_g(location, state,alpha_absorb,beta_absorb,v3)
bci = func(appRegion, state);
faceG = self.callNeumannFuncOnFace(bci,xyzAllFaceNodes, sPts, bci.g, ...
[Qi, Gi] = setNeumannBCOnFace(self, bcsi);
bcmat = bcImpl.getBCMatrices(u,time,gmat);
bmat = self.assembleBoundary(u,time,gmatrix);
femat0 = self.thePde.assembleSelectedFEMatrices(self.p, self.t, self.coefstruct, u0, tdummy, requiredMats, false);
obj = obj.initialDiscretization(u0,tdummy);
obj=obj@pde.DiscretizedPDEModel(thePde,p,e,t,coefstruct,u0,false);
femodel=pde.DynamicDiscretizedPDEModel(self,p,e,t,coefstruct,u0,tlist,tsecondOrder);
[u,dudt] = self.solveTimeDependent(coefstruct, u0, ut0, tlist, ...

採用された回答

Torsten
Torsten 2024 年 8 月 4 日
移動済み: Torsten 2024 年 8 月 4 日
According to the documentation (User's guide, page 2-128), g can be a function of x,y,t and u.
The boundary condition of a second-order PDE can never have u_yy in it, and u_y is already contained in n*(c*grad u).
  5 件のコメント
Torsten
Torsten 2024 年 8 月 4 日
I don't have the necessary experience with the PDE Toolbox to answer your questions. I think it would be best if you contact the official MATLAB support for this:

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGeometry and Mesh についてさらに検索

製品


リリース

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by