How do I find a root in a nonlinear equation?
1 回表示 (過去 30 日間)
古いコメントを表示
my equation is
function y=f(x)
x = (-20:0.05:20); %-20<x<20
y=5*(x^2)*(sin(x))
I already have the graph of this function, but what would I write in the script (m file) to solve this equation for the root and have it plot on the same graph? I tried fzero, but I keep getting an error message back, so maybe I'm using it incorrectly?
0 件のコメント
回答 (1 件)
Star Strider
2015 年 4 月 29 日
One option:
x = (-20:0.05:20); %-20<x<20
y=5*(x.^2).*(sin(x));
yz = y.*circshift(y, [0 -1]);
yzi = find(yz < 0);
for k1 = 1:size(yzi,2)-1
xzeros(k1) = interp1(y(yzi(k1):yzi(k1)+1),x(yzi(k1):yzi(k1)+1),0);
end
figure(1)
plot(x, y, '-m')
hold on
plot(xzeros, zeros(size(xzeros)), 'pb')
hold off
grid
The routine finds the indices near the zero-crossings by multiplying the y-values with a one-index circularly-shifted version of itself and then finds the values where these products are negative. It then uses interp1 and the intervals defined by these indices to find the actual values of the zeros, producing the vector ‘xzeros’ that are the x-coordinates of the zeros. It then plots them.
2 件のコメント
Star Strider
2015 年 4 月 29 日
True. The consecutive indices though provide enough information for interp1 to find the actual zeros.
参考
カテゴリ
Help Center および File Exchange で Systems of Nonlinear Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!