I'm having trouble solving a system of nonlinear equations with the fmincon function.

4 ビュー (過去 30 日間)
xin
xin 2024 年 7 月 27 日
コメント済み: xin 2024 年 7 月 28 日
I want to solve a system of equations containing two non-linear equations, one of which is Psh_newhv == Pse_newhv,the other is Qs_newhv==0, but solving it with the fmincon function doesn't achieve the first constraint, how can I solve this problem?
% Given constants
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
rho = 0:2*pi/72:2*pi;
V_se = 0.2*V_r;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Initial guess
x0 = [0 0];
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-6);
% Constraints
lb = [];
ub = [];
% Solve for each rho
for m = 1:73
% Define the nonlinear constraint function
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fmincon to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fmincon(@(x_newhv) 0, x0, [], [], [], [], lb, ub, fun_newhv, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
I_r_newhv(m)=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho(m)))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho(m)))*exp(j*-pi/3);
Pr_newhv(m)=real(V_r*exp(j*theta_r)*conj( I_r_newhv(m)));
Qr_newhv(m)=imag(V_r*exp(j*theta_r)*conj( I_r_newhv(m)));
I_s_newhv(m)=0.5*I_sh_newhv(m)*exp(j*gamma_newhv(m))*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv(m)*exp(j*-pi/6);
Ps_newhv(m)=real(V_s*conj(I_s_newhv(m)));
Qs_newhv(m)=imag(V_s*conj(I_s_newhv(m)));
Psh_newhv(m)=real(V_tap_newhv*conj(I_sh_newhv(m)*exp(j*gamma_newhv(m))));
Qsh_newhv(m)=imag(V_tap_newhv*conj(I_sh_newhv(m)*exp(j*gamma_newhv(m))));
Ssh_newhv(m) = sqrt(Psh_newhv(m)^2 + Qsh_newhv(m)^2);
Pse_newhv(m)=real(V_se_newhv*exp(j*rho(m))*conj(I_sh_newhv(m)));
Qse_newhv(m)=imag(V_se_newhv*exp(j*rho(m))*conj(I_sh_newhv(m)));
Sse_newhv(m) = sqrt(Pse_newhv(m)^2 + Qse_newhv(m)^2);
end
polarplot( (Psh_newhv - Pse_newhv)/Srate,LineWidth=2)
hold on
polarplot( Qs_newhv/Srate,LineWidth=2)
% Nonlinear constraint function
function [c, ceq] = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
% Constraints
% Nonlinear equality constraints
ceq = [ Psh_newhv - Pse_newhv;Qs_newhv];
c = [];
end

採用された回答

Torsten
Torsten 2024 年 7 月 27 日
編集済み: Torsten 2024 年 7 月 27 日
Use
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-12);
instead of
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-6);
But why do you use "fmincon" to solver a system of two nonlinear equations ? "fsolve" usually is the solver of choice.
rho = 0:2*pi/72:2*pi;
% Initial guess
x0 = [0 0];
% Options for fmincon
options = optimoptions('fmincon', 'Algorithm', 'interior-point', 'Display', 'off','ConstraintTolerance',1e-12);
% Constraints
lb = [];
ub = [];
% Solve for each rho
for m = 1:73
% Define the nonlinear constraint function
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fmincon to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fmincon(@(x_newhv) 0, x0, [], [], [], [], lb, ub, fun_newhv, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
[~,ceq(:,m)] = fun_newhv(x_newhv);
end
hold on
plot(1:m,ceq(1,:),'b')
plot(1:m,ceq(2,:),'r')
hold off
grid on
% Nonlinear constraint function
function [c, ceq] = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
% Constraints
% Nonlinear equality constraints
ceq = [ Psh_newhv - Pse_newhv;Qs_newhv];
c = [];
end
  3 件のコメント
Torsten
Torsten 2024 年 7 月 27 日
編集済み: Torsten 2024 年 7 月 27 日
rho = 0:2*pi/72:2*pi;
% Initial guess
x0 = [0 0];
% Options for fsolve
options = optimoptions('fsolve', 'Display', 'off');
% Solve for each rho
for m = 1:73
% Define the equations
fun_newhv = @(x_newhv) myfun_newhv(x_newhv, rho(m));
% Use fsolve to solve the problem
[x_newhv, fval_newhv, exitflag_newhv(m), output_newhv] = fsolve(fun_newhv, x0, options);
% Extract solutions
gamma_newhv(m) = x_newhv(1);
I_sh_newhv(m) = x_newhv(2);
res(:,m) = fval_newhv;
x0 = x_newhv;
end
hold on
plot(1:m,res(1,:),'b')
plot(1:m,res(2,:),'r')
hold off
grid on
% Nonlinear equations
function res = myfun_newhv(x_newhv, rho)
V_s = 10*1e3/sqrt(3);
n_t = 25*sqrt(3);
V_r = 400/sqrt(3);
theta_r = pi/12;
Srate = 100*1e3/3;
Zbase = (V_r)^2/Srate;
X_r = 0.4*Zbase;
X_t = 400^2/(300*1e3)*4/100;
V_se_newhv = 0.2*V_s;
Z_r = 1i * X_r;
% Extract variables
gamma_newhv = x_newhv(1);
I_sh_newhv = x_newhv(2);
% Compute intermediate quantities
I_r_newhv=1/(Z_r+j*X_t)*(sqrt(3)*(V_s+V_se_newhv*exp(j*rho))*exp(j*pi/6)/n_t-V_r*exp(j*theta_r));
I_s_newhv=0.5*I_sh_newhv*exp(j*gamma_newhv)*exp(j*pi/3)+sqrt(3)/n_t* I_r_newhv*exp(j*-pi/6);
Qs_newhv=imag(V_s*conj(I_s_newhv));
V_tap_newhv=0.5*(V_s+V_se_newhv*exp(j*rho))*exp(j*-pi/3);
Psh_newhv=real(V_tap_newhv*conj(I_sh_newhv*exp(j*gamma_newhv)));
Pse_newhv=real(V_se_newhv*exp(j*rho)*conj(I_s_newhv));
res = [ Psh_newhv - Pse_newhv;Qs_newhv];
end
xin
xin 2024 年 7 月 28 日
Good job, thanks.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by