Bessel function has problems in converting symbolic function into handle function.

1 回表示 (過去 30 日間)
泽川
泽川 2024 年 7 月 26 日
編集済み: Torsten 2024 年 7 月 26 日
I want to derive the spherical Bessel function, so I first construct the spherical Bessel function by using Bessel function.
,
Because I want to derive the spherical Bessel function, I want to first construct a symbolic expression of the spherical Bessel function, and then use the diff function to get the first derivative, and then convert it into a function handle.
However, when n is large, the symbolic expression of spherical Bessel function has problems(In the figure below, I haven't derived the spherical Bessel function yet, but there has been a case of non-convergence, so it can be seen that the derivative is also non-convergence):
If I don't need to find the derivative of Bessel function, then I only need to use the handle to complete this task. I need to construct a function to find the first derivative of spherical Bessel function at any point. Is there any good way?

採用された回答

Torsten
Torsten 2024 年 7 月 26 日
編集済み: Torsten 2024 年 7 月 26 日
It works for the numerical "besselj" function.
Its derivative is given here:
n = 40;
x = 0:0.1:100;
y = sqrt(pi./(2*x)).*besselj(n+0.5,x);
% Derivative of y with respect to x
dy = -sqrt(pi)./(2*x).^(1.5).*besselj(n+0.5,x)+sqrt(pi./(2*x))*0.5.*(besselj(n+0.5-1,x)-besselj(n+0.5+1,x));
figure(1)
plot(x,[y;dy])
grid on
Or you work with symbolic precision:
syms x
y = sqrt(pi/(2*x))*besselj(n+0.5,x);
dy = diff(y,x);
xnum = 0.1:0.1:100;
ynum = subs(y,x,xnum);
dynum = subs(dy,x,xnum);
figure(2)
plot(xnum,[ynum;dynum])
grid on

その他の回答 (1 件)

Torsten
Torsten 2024 年 7 月 26 日
編集済み: Torsten 2024 年 7 月 26 日
This code seems to work. Can you show us where you encounter problems ?
syms x
n = 12;
f = sqrt(sym(pi)/(2*x))*besselj(n+1/2,x)
f = 
df = diff(f,x)
df = 
dfnum = matlabFunction(df)
dfnum = function_handle with value:
@(x)sqrt(2.0).*1.0./sqrt(x).*sqrt(1.0./(x.*2.0)).*(cos(x).*(1.0./x.^2.*-3.003e+3+1.0./x.^4.*1.35135e+6-1.0./x.^6.*1.9297278e+8+1.0./x.^8.*9.820936125e+9-1.0./x.^10.*1.51242416325e+11+1.0./x.^12.*3.16234143225e+11+1.0)+sin(x).*(1.0./x.^3.*6.006e+3-1.0./x.^5.*5.4054e+6+1.0./x.^7.*1.15783668e+9-1.0./x.^9.*7.8567489e+10+1.0./x.^11.*1.51242416325e+12-1.0./x.^13.*3.7948097187e+12)+(cos(x).*(1.0./x.^3.*1.925e+3-1.0./x.^5.*9.4248e+5+1.0./x.^7.*1.2087306e+8-1.0./x.^9.*4.700619e+9+1.0./x.^11.*4.0542838875e+10).*7.8e+1)./x+1.0./x.^2.*cos(x).*(1.0./x.^2.*9.625e+2-1.0./x.^4.*2.3562e+5+1.0./x.^6.*2.014551e+7-1.0./x.^8.*5.87577375e+8+1.0./x.^10.*4.0542838875e+9-1.0).*7.8e+1+(sin(x).*(1.0./x.^2.*9.625e+2-1.0./x.^4.*2.3562e+5+1.0./x.^6.*2.014551e+7-1.0./x.^8.*5.87577375e+8+1.0./x.^10.*4.0542838875e+9-1.0).*7.8e+1)./x)-(sqrt(2.0).*1.0./x.^(3.0./2.0).*(sin(x).*(1.0./x.^2.*-3.003e+3+1.0./x.^4.*1.35135e+6-1.0./x.^6.*1.9297278e+8+1.0./x.^8.*9.820936125e+9-1.0./x.^10.*1.51242416325e+11+1.0./x.^12.*3.16234143225e+11+1.0)-(cos(x).*(1.0./x.^2.*9.625e+2-1.0./x.^4.*2.3562e+5+1.0./x.^6.*2.014551e+7-1.0./x.^8.*5.87577375e+8+1.0./x.^10.*4.0542838875e+9-1.0).*7.8e+1)./x).*sqrt(1.0./(x.*2.0)))./2.0-(sqrt(2.0).*1.0./x.^(5.0./2.0).*(sin(x).*(1.0./x.^2.*-3.003e+3+1.0./x.^4.*1.35135e+6-1.0./x.^6.*1.9297278e+8+1.0./x.^8.*9.820936125e+9-1.0./x.^10.*1.51242416325e+11+1.0./x.^12.*3.16234143225e+11+1.0)-(cos(x).*(1.0./x.^2.*9.625e+2-1.0./x.^4.*2.3562e+5+1.0./x.^6.*2.014551e+7-1.0./x.^8.*5.87577375e+8+1.0./x.^10.*4.0542838875e+9-1.0).*7.8e+1)./x).*1.0./sqrt(1.0./(x.*2.0)))./4.0
  3 件のコメント
Torsten
Torsten 2024 年 7 月 26 日
編集済み: Torsten 2024 年 7 月 26 日
We cannot make use of graphics. Can you include your code as plain .m-file by using the Code-button from the menu bar ?
According to the formula, your function should have a pole at x = 0, shouldn't it ? Maybe that's what the plot shows.
泽川
泽川 2024 年 7 月 26 日
n = 40;
x = 0:0.5:100;
syms X
Formfunc = sqrt(pi./(2*X)) .* besselj(n+0.5, X)
% Formfunc = @(X)sqrt(pi./(2*X)) .* besselj(n+0.5, X);
% Formfunc = besselj(n, X);
% Formfunc_d = diff(Formfunc, X, order);
Formfunc_d = Formfunc;
Formfunc_d = matlabFunction(Formfunc_d);
% 判断阶数n是否为非负整数
if ~isnumeric(n) || n < 0 || floor(n) ~= n
error('阶数n必须为非负整数。');
end
y = zeros(size(x)); % 预分配结果数组
idx_zero = (x == 0); % 筛选出 x=0 的索引位置
if any(idx_zero)
y(idx_zero & (n == 0)) = 1; % n=0 且 x=0 时,球状 Bessel 函数的值为 1
y(idx_zero & (n ~= 0)) = 0; % n 不等于 0 且 x=0 时,球状 Bessel 函数的值为 0
end
idx_nonzero = ~idx_zero; % 筛选出 x!=0 的索引位置
if any(idx_nonzero)
% 计算球状 Bessel 函数
y(idx_nonzero) = Formfunc_d( x(idx_nonzero) );
end
plot(x,y)

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeBessel functions についてさらに検索

製品


リリース

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by