Info
この質問は閉じられています。 編集または回答するには再度開いてください。
k means clustering: Classifying subsequent to a particular cluster - can it be done?
1 回表示 (過去 30 日間)
古いコメントを表示
Hi there,
I have question in relation to k means clustering. Say I created two clusters from data. For example using this code:
X = [randn(100,2)+ones(100,2);...
randn(100,2)-ones(100,2)];
opts = statset('Display','final');
[idx,ctrs] = kmeans(X,2,...
'Distance','city',...
'Replicates',5,...
'Options',opts);
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(ctrs(:,1),ctrs(:,2),'kx',...
'MarkerSize',12,'LineWidth',2)
plot(ctrs(:,1),ctrs(:,2),'ko',...
'MarkerSize',12,'LineWidth',2)
legend('Cluster 1','Cluster 2','Centroids',...
'Location','NW')
My question is, if you collect more data can you assign it to each of the two clusters that have already been formed, or do you have to cluster all of the data again?
If it is possible, how would you do it?
Thank you
0 件のコメント
回答 (1 件)
Wayne King
2011 年 11 月 16 日
k-means is an unsupervised learning algorithm that is sensitive to the number of clusters you choose AND to the initial start centers. I would say that you would need to cluster the data again.
0 件のコメント
この質問は閉じられています。
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!