How I customize self attention layer for identifying wafer defects?
6 ビュー (過去 30 日間)
古いコメントを表示
how I used customize multi head self attention in the CNN network for detecting wafer defects ? please explain with example
0 件のコメント
採用された回答
Shantanu Dixit
2024 年 7 月 15 日
Hi Sharith,
It is my understanding that you want to add and customize self-attention in the CNN network for detecting wafer defects.
You can define a CNN-based architecture and add a self-attention layer in the end using ‘selfAttentionLayer’. The function takes in two parameters, i.e, ‘NumHeads’ and ‘NumKeyChannels’ using which you can change the number of heads and the dimensions of key vector.
Below is a reference code for the model architecture:
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1')
convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
flattenLayer('Name', 'flatten')
selfAttentionLayer(4, 32, 'Name', 'self_attention')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
The above code defines a CNN based architecture incorporating Multi headed self-attention (MHSA) for ten class classification.
Refer to the below MathWorks documentation for more information:
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!