How to solve the following PDE equation

4 ビュー (過去 30 日間)
Sam
Sam 2024 年 7 月 12 日
回答済み: Bill Greene 2024 年 7 月 12 日

採用された回答

Torsten
Torsten 2024 年 7 月 12 日
移動済み: Torsten 2024 年 7 月 12 日
I think you mean x(s,0) = 10 instead of x(s,t) = 10, don't you ?
The easiest way to solve the equation is to discretize the expressions on the right-hand side and solve the resulting system of ordinary differential equations using ode15. Here, the integral term can be approximated by MATLAB's "trapz".
Look up "method-of-lines" for more details.
  2 件のコメント
Sam
Sam 2024 年 7 月 12 日
I tried the solving it using pdepe, but was getting this error
"Error using matlab.internal.math.getdimarg
Dimension argument must be a positive integer scalar within indexing range."
The code is attached below
function theta = solvePDE
x = linspace(0, 1, 50);
t = linspace(0, 10, 100);
sol = pdepe(0, @pdefun, @icfun, @bcfun, x, t);
theta = sol(:,:,1);
end
function [c, f, s] = pdefun(x, t, u, dudx)
integral_term = trapz(x, u);
c = 1;
f = dudx;
s = integral_term;
end
function u0 = icfun(x)
u0 = 30* ones(size(x));
end
function [pl, ql, pr, qr] = bcfun(xl, ul, xr, ur, t)
pl = ul - 30;
ql = 0;
pr = ur - 30;
qr = 0;
end
Torsten
Torsten 2024 年 7 月 12 日
integral_term = trapz(x, u);
"pdepe" supplies x and u pointwise, not for the complete interval [0,1]. Thus using "pdepe" this way is not possible.
It might be possible using this code for your purpose:

サインインしてコメントする。

その他の回答 (1 件)

Bill Greene
Bill Greene 2024 年 7 月 12 日
I don't know how to evaluate that integral using pdepe. However, I have written a pde solver (pde1dm) that has an input syntax very similar to pdepe and includes an option that makes this straightforward.
The "vectorized" option tells pde1dm to call your pdefun with a vector of x values spanning the complete spatial domain of your problem. I have included a slightly-modified version of your code below. If you want to try pde1dm, it can be downloaded using the link above.
function matlabAnswers_7_12_2024
theta=solvePDE;
end
function theta = solvePDE
nx=50;
x = linspace(0, 1, nx);
nx2=ceil(nx/2);
t = linspace(0, 10, 100);
if 0
sol = pdepe(0, @pdefun, @icfun, @bcfun, x, t);
else
opts.vectorized='on';
sol = pde1dm(0, @pdefun, @icfun, @bcfun, x, t,opts);
end
theta = sol(:,:,1);
figure; plot(x, sol(end,:)); title 'solution at final time';
figure; plot(t, sol(:,nx2)); title 'solution at center as a function of time';
end
function [c, f, s] = pdefun(x, t, u, dudx)
nx=length(x);
integral_term = trapz(x, u);
c = ones(1,nx);
f = dudx;
s = ones(1,nx)*integral_term;
end
function u0 = icfun(x)
u0 = 30* ones(size(x));
end
function [pl, ql, pr, qr] = bcfun(xl, ul, xr, ur, t)
pl = ul - 30;
ql = 0;
pr = ur - 30;
qr = 0;
end

カテゴリ

Help Center および File ExchangeEigenvalue Problems についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by