現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Solving unknown matrics to the power 20
4 ビュー (過去 30 日間)
古いコメントを表示
yasmin ismail
2024 年 7 月 10 日
% [P] * [TPM]^n* [R]= CR
disp('Create an array with seven elements in a single row:')
disp('>> P = [1 0 0 0 0 0 0]')
p = [1 0 0 0 0 0 0]
disp('Create an array with seven elements in a single column:')
disp('>> R = [9; 8; 7; 6; 5; 4; 3]')
R = [9; 8; 7; 6; 5; 4; 3]
CR = [0.45]
Solve (TPM)^20=CR/ (p*R)
I would like to find the matrics [TPM] with size 7*7? How to do it ?
回答 (2 件)
Torsten
2024 年 7 月 10 日
編集済み: Torsten
2024 年 7 月 10 日
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
n = 20;
TPM = diag([(CR/(p(1)*R(1)))^(1/n),zeros(1,6)]);
p*TPM^n*R
Hint:
Assume TPM as diagonal: TPM = diag([d(1),...,d(7)]).
Then your relation reads
p(1)*R(1)*d(1)^n + ... + p(7)*R(7)*d(7)^n = CR
30 件のコメント
Torsten
2024 年 7 月 10 日
編集済み: Torsten
2024 年 7 月 10 日
The matrix TPM = diag([(CR/(p(1)*R(1)))^(1/n),zeros(1,6)]) is of size 7x7.
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
n = 20;
TPM = diag([(CR/(p(1)*R(1)))^(1/n),zeros(1,6)])
TPM = 7x7
0.8609 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Of course there are many more solutions because you have 1 equation with 49 unknowns:
p*TPM^n*R = CR
yasmin ismail
2024 年 7 月 10 日
編集済み: yasmin ismail
2024 年 7 月 10 日
and If i want to get in the solution matrix summation of each row =0 or 1?
Can i get solution like this based on your answer that i can get different solution?
Torsten
2024 年 7 月 10 日
編集済み: Torsten
2024 年 7 月 10 日
what does zeros(1,6) mean
diag([(CR/(p(1)*R(1)))^(1/n),zeros(1,6)]) means that TPM is a diagonal matrix with first diagonal element equal to CR/(p(1)*R(1)))^(1/n) and the six following diagonal elements equal to 0.
how we can get different matrix as solutions
What kind of matrices do you have in mind ? Diagonal matrices are most easily computed because of the relation p(1)*R(1)*d(1)^n + ... + p(7)*R(7)*d(7)^n = CR they have to fulfill. In your case, p(i) = 0 for i>1, thus the matrix I gave you and its negative counterpart are the only diagonal solution matrices for your problem.
yasmin ismail
2024 年 7 月 10 日
@TorstenI am applying markov chain model and the unkown matrix is the transition propability matrix [TPM] which has in each column probability distributuin which mean that: summation of each row equal 1 or maybe zero without negative value so how to get this answer for an example of answer that i am looking for:
.4 .6 0 0 0 0 0
0 .7 .3 0 0 0 0
0 0 0 0 0 0 1
Torsten
2024 年 7 月 10 日
編集済み: Torsten
2024 年 7 月 10 日
Why is this matrix 3x7 instead of 7x7 ? It doesn't fit to the dimensions of p and R.
And if you know the answer, why do you ask ? As I said, there are many matrices that fulfill your requirement. I fear I will again choose one that you don't like.
yasmin ismail
2024 年 7 月 10 日
@Torsten no this is not answer , i just give an example of how the answer I would like to be
summation of each row =1 or zero
Torsten
2024 年 7 月 10 日
編集済み: Torsten
2024 年 7 月 10 日
summation of each row =1 or zero
I only know the definition that all rows must add to 1. That's implemented in the code below.
For your case given MATLAB cannot find a solution. But this doesn't mean that no solution exists.
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
n = 20;
x0 = eye(7);
obj = @(x)(p*x^n*R-CR)^2;
x = fmincon(obj,x0,[],[],[],[],zeros(7),ones(7),@nonlcon)
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.956251e-17.
Local minimum possible. Constraints satisfied.
fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.
x = 7x7
0.4208 0.1777 0.2448 0.1360 0.0014 0.0171 0.0022
0.0023 0.5024 0.2325 0.1762 0.0555 0.0290 0.0022
0.0023 0.1365 0.5155 0.2118 0.0858 0.0372 0.0110
0.0023 0.1443 0.2853 0.3782 0.1210 0.0473 0.0215
0.0023 0.1498 0.3060 0.2865 0.1715 0.0546 0.0292
0.0023 0.1522 0.3153 0.3008 0.1579 0.0399 0.0315
0.0023 0.1512 0.3117 0.2966 0.1568 0.0618 0.0195
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
p*x^n*R-CR
ans = 6.1420
sum(x,2)
ans = 7x1
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function [c,ceq] = nonlcon(x);
ceq(1:7) = sum(x,2)-1;
c = [];
end
yasmin ismail
2024 年 7 月 11 日
yes summation for each row in TPM should equal to 1 not zero , its written by mistake, so there is a modification in code you written above ?
yasmin ismail
2024 年 7 月 13 日
編集済み: yasmin ismail
2024 年 7 月 13 日
@Torsten I took the result of X but when i make the multiplication of matrices
P*(x^20)*R= 4.5 or 0.45 whatever the value of CR for example
I didnt get the result of CR , which mean the solution is incorrect
How to fix it?
Torsten
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 13 日
I wrote
For your case given MATLAB cannot find a solution. But this doesn't mean that no solution exists.
This means that either the initial guess for P as the identity matrix was too bad or that no solution exists.
I don't know of a tailored method that either returns P or "problem unsolvable". So I suggested to use "fmincon" as sledgehammer. But as for all optimization problems, there is no guarantee to converge towards the global minimum.
yasmin ismail
2024 年 7 月 13 日
@Torsten can you show me how to use "fmincon" as sledgehammer because I dont have experience in using coding I just want to find solution for my equation and I looked for any software to solve but I didnt find , someone suggested that matlab could help
so can you help me to fix it?
Torsten
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 13 日
I gave you a code using the general-purpose solver "fmincon" to set up your problem. You didn't get a solution. You can try to vary x0 = eye(7) as initial guess for your matrix. But beyond this, I have no idea how to tackle this specific problem.
Usually in Markov theory, the transition matrices are given and don't need to be determined. Do you try to make a kind of regression of the model ?
yasmin ismail
2024 年 7 月 13 日
@Torsten what is the meaning of :
x0 = eye(7)
unfortunatly I dont have transition matrics i have only the condition rating within 20 years and initial state,
I didnt make regression analysis how can I make it ?
Walter Roberson
2024 年 7 月 13 日
x0 = eye(7)
means that the variable x0 is to be initialized to
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
yasmin ismail
2024 年 7 月 13 日
@Walter Roberson how to let x as following as an example:
.7 .3 0 0
0 .5 .5 0
0 0 .8 .2
0 0 0 1
I want the tranisition matrix to be like this and same time size 7*7
Torsten
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 13 日
x0 = [.7 .3 0 0
0 .5 .5 0
0 0 .8 .2
0 0 0 1]
x0 = 4x4
0.7000 0.3000 0 0
0 0.5000 0.5000 0
0 0 0.8000 0.2000
0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
But I suggest you first pass an introductory course to MATLAB free of costs before you continue working on your problem:
yasmin ismail
2024 年 7 月 13 日
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
I want x0 to be for example like
0.7000 0.3000 0 0
0 0.5000 0.5000 0
0 0 0.8000 0.2000
0 0 0 1.0000
if p=.7 and q=.3 that mean p+q=1
I want x0 in above code to be p+q=1 in each row this how i want solution of transition matric looks like
Torsten
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 13 日
So you want a random matrix with the above structure ?
d = rand(6,1);
du = 1- d;
x0 = diag([d;1]) + diag(du,1)
x0 = 7x7
0.2836 0.7164 0 0 0 0 0
0 0.0907 0.9093 0 0 0 0
0 0 0.4637 0.5363 0 0 0
0 0 0 0.0433 0.9567 0 0
0 0 0 0 0.4659 0.5341 0
0 0 0 0 0 0.0409 0.9591
0 0 0 0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
By the way: This is code. It explicitly sets x0 to the specific matrix.
x0 = [.7 .3 0 0
0 .5 .5 0
0 0 .8 .2
0 0 0 1]
x0 = 4x4
0.7000 0.3000 0 0
0 0.5000 0.5000 0
0 0 0.8000 0.2000
0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
yasmin ismail
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 13 日
yes for above structure but I got different answer, I wrote the code like this:
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
n = 20;
d = rand(6,1);
du = 1- d;
x0 = diag([d;1]) + diag(du,1)
x0 = 7x7
0.5368 0.4632 0 0 0 0 0
0 0.7662 0.2338 0 0 0 0
0 0 0.2375 0.7625 0 0 0
0 0 0 0.5983 0.4017 0 0
0 0 0 0 0.0973 0.9027 0
0 0 0 0 0 0.0484 0.9516
0 0 0 0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
obj = @(x)(p*x^n*R-CR)^2;
x = fmincon(obj,x0,[],[],[],[],zeros(7),ones(7),@nonlcon)
Local minimum possible. Constraints satisfied.
fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.
x = 7x7
0.7775 0.1563 0.0179 0.0247 0.0010 0.0123 0.0104
0.0023 0.8959 0.0457 0.0239 0.0172 0.0137 0.0012
0.3100 0.4383 0.1072 0.0722 0.0326 0.0221 0.0177
0.1876 0.6243 0.1296 0.0092 0.0226 0.0145 0.0122
0.3579 0.3974 0.1403 0.0660 0.0298 0.0007 0.0081
0.3236 0.2757 0.0803 0.0403 0.0228 0.0002 0.2570
0.1272 0.6831 0.1459 0.0013 0.0216 0.0093 0.0116
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
p*x^n*R-CR
ans = 7.4602
sum(x,2)
ans = 7x1
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function [c,ceq] = nonlcon(x);
ceq(1:7) = sum(x,2)-1;
c = [];
end
Torsten
2024 年 7 月 13 日
編集済み: Torsten
2024 年 7 月 14 日
x0 is only an initial guess. It does not guarantee that the solution from "fmincon" will also have this structure. You will have to rewrite the code solving in only 6 unknowns (the elements on the diagonal except the known 1 at the end) instead of 49 unknowns.
But it seems unlikely that restricting the solution space of possible TPM matrices will yield a solution.
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
n = 20;
lb = zeros(6,1);
ub = ones(6,1);
obj = @(x)(p*(diag([x;1])+diag(1-x,1))^n*R-CR)^2;
x0 = rand(6,1);
x = fmincon(obj,x0,[],[],[],[],lb,ub)
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
x = 6x1
0.1715
0.1762
0.1705
0.1813
0.1661
0.1718
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Reconstructed matrix
X = diag([x;1])+diag(1-x,1)
X = 7x7
0.1715 0.8285 0 0 0 0 0
0 0.1762 0.8238 0 0 0 0
0 0 0.1705 0.8295 0 0 0
0 0 0 0.1813 0.8187 0 0
0 0 0 0 0.1661 0.8339 0
0 0 0 0 0 0.1718 0.8282
0 0 0 0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
error = obj(x)
error = 6.5025
yasmin ismail
2024 年 7 月 14 日
@Torsten in this case you got transition size 6*1 which in correct should be 7*7 because p size1*7 and R size 7*1, so how x = 6x1
0.1904
0.1700
0.1558
0.1730
0.1696
0.1646
Torsten
2024 年 7 月 14 日
編集済み: Torsten
2024 年 7 月 14 日
Read again:
You will have to rewrite the code solving in only 6 unknowns (the elements on the diagonal except the known 1 at the end) instead of 49 unknowns.
I included how to reconstruct the matrix from the solution vector in the code above.
Again my advice: Learn MATLAB before you try to solve this problem.
As you can see below, the outcome for p*TPM^20*R is always >= 3, so your value of 0.45 is out of reach. I think the components of your R-vector are too large.
Note that the value 3 as smallest value you can get for p*TPM^20*R corresponds to the value of the objective function from the last code I gave you since (3-0.45)^2 = 6.5025.
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
n = 20;
pr = linspace(0,1,15);
[pr1,pr2,pr3,pr4,pr5,pr6] = ndgrid(pr);
pr1 = pr1(:);
pr2 = pr2(:);
pr3 = pr3(:);
pr4 = pr4(:);
pr5 = pr5(:);
pr6 = pr6(:);
for i = 1:numel(pr1)
d = [pr1(i);pr2(i);pr3(i);pr4(i);pr5(i);pr6(i)];
outcome(i) = p*(diag([d;1])+diag(1-d,1))^20*R;
end
histogram(outcome,'Normalization','probability')
yasmin ismail
2024 年 7 月 14 日
@Torsten yes I agree with you 3 is the minimum not 0.45, thus CR= [3]
but can you please wrote me the construct code after the last modification because I got confused with the others code written
Torsten
2024 年 7 月 14 日
編集済み: Torsten
2024 年 7 月 14 日
This is the last code version with CR = 3 instead of CR = 0.45. But as you can see from the histogram plot, there seem to be many more matrices with p*TPM^n*R=CR apart from the one that "fmincon" determines.
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [3];
n = 20;
lb = zeros(6,1);
ub = ones(6,1);
obj = @(x)(p*(diag([x;1])+diag(1-x,1))^n*R-CR)^2;
x0 = rand(6,1);
x = fmincon(obj,x0,[],[],[],[],lb,ub)
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
x = 6x1
0.3503
0.3396
0.3170
0.3228
0.3792
0.3400
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Reconstructed matrix
X = diag([x;1])+diag(1-x,1)
X = 7x7
0.3503 0.6497 0 0 0 0 0
0 0.3396 0.6604 0 0 0 0
0 0 0.3170 0.6830 0 0 0
0 0 0 0.3228 0.6772 0 0
0 0 0 0 0.3792 0.6208 0
0 0 0 0 0 0.3400 0.6600
0 0 0 0 0 0 1.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%Error
error = obj(x)
error = 8.0323e-08
Torsten
2024 年 7 月 14 日
編集済み: Torsten
2024 年 7 月 14 日
From the histogram plot, the minimum value for p*TPM^20*R is 3 and the maximum value is 9 for the given vectors p and R. So you can only get a solution matrix TPM of this structure if you choose CR >= 3 and CM <= 9 (thus the minimum and maximum components of the vector R).
yasmin ismail
2024 年 7 月 15 日
@Torsten yes i got it
but can you explain to me what does to the power 2 in this equation related to?
obj = @(x)(p*(diag([x;1])+diag(1-x,1))^n*R-CR)^2
Torsten
2024 年 7 月 15 日
編集済み: Torsten
2024 年 7 月 15 日
Searching for an x such that f(x) = 0 can be done by minimizing f(x)^2.
Minimizing f(x) doesn't work because "fmincon" would try to make f(x) negative up to -Inf which is not desired.
Instead of f(x)^2, you could take f(x)^n for n being any even integer or any function g(f(x)) where g(y) has its minimum in y=0.
Steven Lord
2024 年 7 月 10 日
p = [1 0 0 0 0 0 0];
R = [9; 8; 7; 6; 5; 4; 3];
CR = [0.45];
RHS1 = CR./(p*R)
RHS1 = 0.0500
Did you perhaps mean to take the outer product of p and R, not the inner product? That would give you a right-hand side that is 7-by-7, but ...
RHS2 = CR./(R*p)
RHS2 = 7x7
0.0500 Inf Inf Inf Inf Inf Inf
0.0563 Inf Inf Inf Inf Inf Inf
0.0643 Inf Inf Inf Inf Inf Inf
0.0750 Inf Inf Inf Inf Inf Inf
0.0900 Inf Inf Inf Inf Inf Inf
0.1125 Inf Inf Inf Inf Inf Inf
0.1500 Inf Inf Inf Inf Inf Inf
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
RHS2^(1/20)
ans = 7x7
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Raising RHS1 to the (1/20) power or taking the 20th root gives you something that looks less like garbage, but it isn't 7-by-7.
sol1 = RHS1^(1/20)
sol1 = 0.8609
sol2 = nthroot(RHS1, 20)
sol2 = 0.8609
Check by raising the solutions to the 20th power and comparing with RHS1.
format longg
[sol1^20; sol2^20; RHS1]
ans = 3x1
0.0500000000000001
0.0500000000000001
0.05
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Looks close enough for government work.
What is the actual problem you're trying to solve? I'm guessing this is a homework assignment; if it is show us exactly what you're being instructed to do, not what you think you're being instructed to do.
5 件のコメント
yasmin ismail
2024 年 7 月 10 日
@Steven Lord I am applying markov chain model , I dont have the transition probability matrix which is unknown
Steven Lord
2024 年 7 月 10 日
You don't have nearly enough information. Let's take a simpler example: consider a system that has three states and that it starts off in the first state.
initialState = [1; 0; 0];
After two steps, it ends up in the third state always.
finalState = [0; 0; 1];
How did it get from initialState to finalState? There are many different possibilities. One possibility is that your system could have gone from the first state to the second state at the first step then the second state to the third at the second step.
transitionMatrix1 = [0 0 0; 1 0 0; 0 1 1]
transitionMatrix1 = 3x3
0 0 0
1 0 0
0 1 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
transitionMatrix1^2*initialState
ans = 3x1
0
0
1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
plot(digraph(transitionMatrix1.'))
Or it could have gone from the first state to the third state at the first step then remained in the third state for the second step.
transitionMatrix2 = [0 0 0; 0 0 0; 1 0 1]
transitionMatrix2 = 3x3
0 0 0
0 0 0
1 0 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
transitionMatrix2^2*initialState
ans = 3x1
0
0
1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
plot(digraph(transitionMatrix2.'))
How can you tell whether the transition matrix in this case should be transitionMatrix1 or transitionMatrix2?
Now you want to do this for seven states and twenty steps?
If you had more data the Hidden Markov Model functionality in Statistics and Machine Learning Toolbox might be able to help, but with only initial and final states (which I think are your p and R vectors) I'm not sure hmmestimate will be able to do very much.
yasmin ismail
2024 年 7 月 10 日
編集済み: yasmin ismail
2024 年 7 月 10 日
p = [1 0 0 0 0 0 0];
and I have a vector of condition rating
R = [9; 8; 7; 6; 5; 4; 3];
I have number of years n=20
I have the final condition rating after 20 years = 0.45
I dont have the transition probability matrix, and as you know the equation to predict future condition at n (year) = initial state * (TPM^n) * vactor of condition rating
this is my equation and as you see TPM is unknown and i would like to solve it
and my assumption that the element will move one state from condition to onother what i mean if the element in condition 9 for example it will not jump to 7 directly first move to 8 then 7 this is my assumption and based on it i want to get transition propability matrix
Steven Lord
2024 年 7 月 10 日
Do you assume that TPM is unique? It's not, no more than the solution to this problem posed by Cleve Moler is unique. That means the second of Cleve's Golden Rules of computation applies: "The next hardest things to compute are things that are not unique."
You've already told Torsten one additional requirement, though it doesn't provide enough information to make the solution unique. "If i want to get in the solution matrix summation of each row =0 or 1?" So what other requirements do you have for this problem?
yasmin ismail
2024 年 7 月 11 日
@Steven Lord I dont what exactly you mean by unique TPM, but what i mean that the condition for my elements will not jump two or three states in one time , they should move one state , if it state 4 shoud move to 3 then 2
and yes the summation for each row in TPM should equal to 1 not zero
参考
カテゴリ
Help Center および File Exchange で Linear Least Squares についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)