I got different outputs from the trained network
3 ビュー (過去 30 日間)
古いコメントを表示
Hi all, I already trained a LSTM network and use it to classify the testset. However, the outputs are different when I input the testset samples one by one through for loop and input it as an array. Below is the code:
% Xtest is a 81-1 vector.
% case1: one by one input through for loop
for i = 1:81
testPred_single(i) = classify(LSTM_net,Xtest(i),'SequenceLength','longest');
end
% case2: array input
testPred=classify(LSTM_net,Xtest,'SequenceLength','longest');
Below is the part element of the output variables testPred_single and testPred.
Could anyone explain what causes the gap between this two output variables? Thanks.
2 件のコメント
Aquatris
2024 年 7 月 10 日
I am by no means an expert but my understanding is, as per definition of LSTM, they are not good when the input data is not a sequence. When you give the inputs individually, you basically remove the sequence information. Hence it comes up with a different output.
採用された回答
Antoni Woss
2024 年 7 月 12 日
編集済み: Antoni Woss
2024 年 7 月 12 日
The differences in the output are coming from the preprocessing applied to your data in the call to minibatchpredict or classify as per the referenced examples. Specifically, the SequencePaddingDirection="left" will append the MiniBatchSize number of inputs with zeros such that the different time dimensions for each observation within the minibatch all have the same total number of time steps. You can find more information about sequence padding on this documentation page: https://uk.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html#mw_81a7b85b-51dc-4bd7-9bb9-215f473a956f
As a concrete example, the first two entries of XTest have different time lengths.
XTest(1:2)
ans =
2×1 cell array
{127×3 double}
{180×3 double}
So running the minibatchpredict function with a MiniBatchSize=2 and SequencePaddingDirection="left" will add a 53x3 zero matrix to the first entry of XTest so that both observations are of size 180x3.
Running the minibatchpredict with function with a MiniBatchSize=1 will not do any padding and will call predict on the two sequences through the network separately. Therefore, you would expect a difference in the first batch output of the network for these two cases, but not the second (as no padding ever occurs in the second observation for MiniBatchSize=1 or MiniBatchSize=2 as it is the longest sequence).
scoresMiniBatchSize_1 = minibatchpredict(net,XTest,SequencePaddingDirection="left",MiniBatchSize=1);
scoresMiniBatchSize_2 = minibatchpredict(net,XTest,SequencePaddingDirection="left",MiniBatchSize=2);
scoresMiniBatchSize_1(1:2,:)
ans =
2×4 single matrix
0.0000 0.8725 0.0000 0.1274
1.0000 0.0000 0.0000 0.0000
scoresMiniBatchSize_2(1:2,:)
ans =
2×4 single matrix
0.0000 0.8755 0.0006 0.1239
1.0000 0.0000 0.0000 0.0000
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!