Selectin elements that satisfy a certain condition with modular arithmetic

1 回表示 (過去 30 日間)
Adrian
Adrian 2024 年 7 月 9 日
回答済み: Voss 2024 年 7 月 9 日
Suppose I have the finite field F_3={0,1,2}. Suppose I have the following equations:
1=x_1+x_4+x_5
0=x_2+x_5+x_6
0=x_3+x_4+x_6
where each x_i is a member of F_3. How Can I obtain the set of all possible combinations for the solutions of the above equations?
Thanks for any help in advance.

採用された回答

Voss
Voss 2024 年 7 月 9 日
N = 6;
m = 3;
M = dec2base(0:m^N-1,m)-'0';
idx = mod(M(:,1)+M(:,4)+M(:,5),m) == 1 ...
& mod(M(:,2)+M(:,5)+M(:,6),m) == 0 ...
& mod(M(:,3)+M(:,4)+M(:,6),m) == 0;
sol = M(idx,:);
disp(sol)
0 0 0 2 2 1 0 0 1 0 1 2 0 0 2 1 0 0 0 1 0 1 0 2 0 1 1 2 2 0 0 1 2 0 1 1 0 2 0 0 1 0 0 2 1 1 0 1 0 2 2 2 2 2 1 0 0 0 0 0 1 0 1 1 2 1 1 0 2 2 1 2 1 1 0 2 1 1 1 1 1 0 0 2 1 1 2 1 2 0 1 2 0 1 2 2 1 2 1 2 1 0 1 2 2 0 0 1 2 0 0 1 1 2 2 0 1 2 0 0 2 0 2 0 2 1 2 1 0 0 2 0 2 1 1 1 1 1 2 1 2 2 0 2 2 2 0 2 0 1 2 2 1 0 2 2 2 2 2 1 1 0

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by