Solving a constrained optimization problem

8 ビュー (過去 30 日間)
Erick
Erick 2015 年 4 月 23 日
コメント済み: Erick 2015 年 5 月 1 日
I am trying to solve an optimization problem in matlab:
minimize( sum_{i,j}(f(M(i,j))) + err )
subject to: - norm(M) < err
- err > 0
- if j == i+1: M(i,j) > 1
- if j == i-1: M(i,j) < -1
- else: -1 <= M(i,j) <= 1
where: - f is a non convex function in general
- M is an n by n matrix
I looked at the constrained optimization toolbox but could not find how to solve this problem.
Can anyone point me which function I should use?

採用された回答

Alan Weiss
Alan Weiss 2015 年 4 月 24 日
If you look in the Optimization Decision Table you see that for a constrained nonlinear problem you should use fmincon. The constraint norm(M) < err is a nonlinear inequality constraint. The other constraints on M(i,j) are bound constraints.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
  3 件のコメント
Alan Weiss
Alan Weiss 2015 年 4 月 30 日
That sounds right, with the proviso that you make
A = [M(:);err];
I mean, make a column vector, using a semicolon before err.
Alan Weiss
MATLAB mathematical toolbox documentation
Erick
Erick 2015 年 5 月 1 日
That works. Thank you for your help!

サインインしてコメントする。

その他の回答 (0 件)

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by