I would like to plot an interpolated 3d Surface between two faces, i.e. the third face of a truncated cone. my plot isn't working but I'm not sure what is wrong
1 回表示 (過去 30 日間)
古いコメントを表示
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);
0 件のコメント
採用された回答
Star Strider
2024 年 6 月 19 日
TThis does not look like a cone to me at all.
What do you want to do?
r1=0.5;
% t1=[(0:0.1:2*pi),0];
t1=0:0.1:2*pi;
X1=r1*cos(t1);
Y1=r1*sin(t1);
n1=numel(X1);
Z1=zeros(1,n1);
DT=delaunay(X1,Y1);
trisurf(DT,X1,Y1,Z1);
hold;
r2=0.25;
% t2=[(0:0.1:2*pi),0];
t2=0:0.1:2*pi;
X2=r2*cos(t2);
Y2=r2*sin(t2);
n2=numel(X2);
Z2=200*ones(1,n2);
DT2=delaunay(X2,Y2);
trisurf(DT2,X2,Y2,Z2);
X= [X1,X2];
Y=[Y1,Y2];
Z=[Z1,Z2];
[xq,yq]=meshgrid(X,Y);
zq=ones(126).*Z;
surf(xq,yq,zq);
view(-27,30)
My approach to a truncated cone (assuming my interpretation matches yours), woudl be something like this —
r = [1; 2]; % Radius Multipliers
h = [0; 3]; % Height Multipliers
a = linspace(0, 2*pi); % Angle Vector
cyl = [cos(a); sin(a)] % Circles
figure
surf(r*cyl(1,:), r*cyl(2,:), h.*[ones(size(a)); ones(size(a))], 'FaceColor','b', 'FaceAlpha',0.5) % Plot Cone
hold on
patch((r(1)*cyl(1,:)), (r(1)*cyl(2,:)), ones(size(a))*h(1), 'r') % Plot Lower Cap
patch(r(2)*cyl(1,:), r(2)*cyl(2,:), ones(size(a))*h(2), 'g') % Plot Upper Cap
hold off
grid on
axis('equal')
view(-27,30)
This is my interpretation of a truncated cone with end-caps.
.
6 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Surface and Mesh Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!