How to solve non_linear equation

1 回表示 (過去 30 日間)
Fatima Majeed
Fatima Majeed 2024 年 6 月 12 日
コメント済み: Sam Chak 2024 年 6 月 13 日
I want to solve this eqution

採用された回答

Star Strider
Star Strider 2024 年 6 月 12 日
Solve it symbolically —
syms z
Eqn = z^3 == log(z)*(482036/0.18525)^5
Eqn = 
Z = solve(Eqn)
Z = 
Z = vpa(Z)
Z = 
format longG
Zd = double(Z)
Zd =
-76151096277.1022 + 123912303259.595i 145274860824.135 + 0i 1 + 0i -76151096277.1022 - 123912303259.595i
.
  4 件のコメント
Sam Chak
Sam Chak 2024 年 6 月 13 日
編集済み: Sam Chak 2024 年 6 月 13 日
@Star Strider, @Torsten, Wolfram Alpha also returned the perfect "1" as one of the solutions. But we all know that . Maybe that's merely an approximation because ?
syms z
f = (z^3)/(482036/0.18525)^5;
limit(f, z, 1)
ans = 
double(ans)
ans = 8.3829e-33
Plot:
z = linspace(0.9, 1.1, 20001);
y1 = z.^3;
y2 = log(z)*(482036/0.18525)^5;
plot(z, [y1; y2]), grid on, ylim([0 2])
Sam Chak
Sam Chak 2024 年 6 月 13 日
I guess both MATLAB and Wolfram Alpha analytically computed the solution:
c = (4820360/0.018525)^7; % constant
sol = exp(-lambertw(-3/c)/3)
sol = 1
However, I mathematically believe that this is just an approximation with the real solution very close to being 1.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumeric Solvers についてさらに検索

タグ

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by