interpolation of a sinusoidal tunnel data

6 ビュー (過去 30 日間)
ran
ran 2024 年 6 月 8 日
コメント済み: ran 2024 年 6 月 13 日
hallo eveyone, i have fluent data of a flow instive a wavy tunnel as present here. I export the data as ACII file and i want to crate matrixs so i can work on the data preaty easely. the problem is that all the scatterd interpolation mathods do not work smothly on a wavy wall, wich asagnifetly decline. i need bater mathod to work with that interpolat on the wall in between those data points and not in the normal x y deraction? any segestions ??? may data is simpal scatterd data of x,y,and u
  3 件のコメント
Mathieu NOE
Mathieu NOE 2024 年 6 月 10 日
pls share your data and yur code if you have one
ran
ran 2024 年 6 月 10 日
Sorry, but the main point is that I am attempting to interpolate data from Fluent, which are on a sinusoidal wall (sinusoidal tunnel). The code and data are straightforward and I hope they are helpful. those waves are not origin in the fluent results and artifact from interpolation, you can see some "steps on the wall wich i asumed creat those
% Let the user choose the folder containing the text files
folder_path = uigetdir('Select the folder containing the text files');
% Check if the user canceled folder selection
if folder_path == 0
disp('Folder selection canceled. Exiting...');
return;
end
% Get a list of all the text files in the folder
file_list = dir(fullfile(folder_path, '*.txt'));
% Initialize cell arrays to store data for each variable
x_cell = cell(length(file_list), 1);
y_cell = cell(length(file_list), 1);
u_cell = cell(length(file_list), 1);
v_cell = cell(length(file_list), 1);
T_cell = cell(length(file_list), 1);
P_cell = cell(length(file_list), 1);
Tw_cell = cell(length(file_list), 1);
% rho_cell = cell(length(file_list), 1);
% k_cell = cell(length(file_list), 1);
% dissRate_cell = cell(length(file_list), 1);
% Visxosity_cell = cell(length(file_list), 1);
% Cp_cell = cell(length(file_list), 1);
% thermal_cell = cell(length(file_list), 1);
% Loop through each file and read its contents
for i = 1:length(file_list)
% Get the file name
file_name = fullfile(folder_path, file_list(i).name);
% Read the data from the file
data = readtable(file_name);
% Store the data in the cell arrays with the file name as the cell name
[~, file_name_only, ~] = fileparts(file_name);
x_cell{i} = struct('file_name', file_name_only, 'data', data.x_coordinate);
y_cell{i} = struct('file_name', file_name_only, 'data', data.y_coordinate);
u_cell{i} = struct('file_name', file_name_only, 'data', data.x_velocity);
v_cell{i} = struct('file_name', file_name_only, 'data', data.y_velocity);
T_cell{i} = struct('file_name', file_name_only, 'data', data.temperature);
P_cell{i} = struct('file_name', file_name_only, 'data', data.pressure);
Tw_cell{i} = struct('file_name', file_name_only, 'data', data.wall_temperature);
% rho_cell{i} = struct('file_name', file_name_only, 'data', data.density);
% k_cell{i} = struct('file_name', file_name_only, 'data', data.turb_kinetic_energy);
% dissRate_cell{i} = struct('file_name', file_name_only, 'data', data.turb_diss_rate);
% Visxosity_cell{i} = struct('file_name', file_name_only, 'data', data.viscosity_lam);
% Cp_cell{i} = struct('file_name', file_name_only, 'data', data.specific_heat_cp);
% thermal_cell{i} = struct('file_name', file_name_only, 'data', data.thermal_conductivity_lam);
end
%%
% Initialize structures to store wall coordinates and number of y coordinates
wall_coords = struct('x', {}, 'y', {});
num_y_coordinates = struct('file_name', {}, 'num_y', {});
y_coordinates_end_tunnel = struct('file_name', {}, 'num_y', {});
for i = 1:length(file_list)
% Find wall coordinates
xwall = x_cell{i}.data(Tw_cell{i}.data > 0);
ywall = y_cell{i}.data(Tw_cell{i}.data > 0);
% Find the largest wall X-coordinate (end of the tunnel)
largest_wall_X = max(xwall);
% Find the index of the largest wall X-coordinate
largest_wall_X_idx = find(xwall,1, 'last');
% Determine the distance between the largest wall X-coordinate and the preceding one
distance_between = max(gradient(sort(xwall)));
% Define the search range for X-coordinates
EndOfTunnel = find(largest_wall_X - 0.7 * distance_between < x_cell{i}.data & x_cell{i}.data <= largest_wall_X);
% Extract the corresponding y-coordinates
y_coordinates_end_tunnel(i).file_name = x_cell{i}.file_name;
y_coordinates_end_tunnel(i).num_y = y_cell{i}.data(EndOfTunnel);
% Store wall coordinates
wall_coords(i).x = xwall;
wall_coords(i).y = ywall;
% Count the number of y-coordinates
num_y_coordinates(i).file_name = x_cell{i}.file_name;
num_y_coordinates(i).num_y = length(y_coordinates_end_tunnel(i).num_y);
end
%%
% Initialize structures to store interpolated data
interp_u_cell = cell(length(file_list), 1);
interp_v_cell = cell(length(file_list), 1);
interp_T_cell = cell(length(file_list), 1);
interp_P_cell = cell(length(file_list), 1);
interp_Tw_cell = cell(length(file_list), 1);
interp_x_cell = cell(length(file_list), 1);
interp_y_cell = cell(length(file_list), 1);
for i = 1:length(file_list)
% Find wall coordinates
xwall = x_cell{i}.data(Tw_cell{i}.data > 0);
ywall = y_cell{i}.data(Tw_cell{i}.data > 0);
% Find the largest wall X-coordinate (end of the tunnel)
largest_wall_X = max(xwall);
% Calculate the distance between the maximum and minimum wall X-coordinates
distance_total = max(xwall) - min(xwall);
% Define the wavelength
wavelength = 28.8/1000; % m
% Calculate the number of sections based on the wavelength
num_sections = floor(distance_total / wavelength);
% Initialize structures to store interpolated data for each section
interp_u = cell(num_sections, 1);
interp_v = cell(num_sections, 1);
interp_T = cell(num_sections, 1);
interp_P = cell(num_sections, 1);
interp_Tw = cell(num_sections, 1);
interp_x= cell(num_sections, 1);
interp_y = cell(num_sections, 1);
% Initialize starting point for creating sections
current_x = largest_wall_X;
% Loop to create sections and interpolate data within each section
for j = 1:num_sections
% Find the end point of the current section
end_x = current_x - wavelength;
% Find the indices of x coordinates within the current section
section_indices = find(x_cell{i}.data >= end_x & x_cell{i}.data < current_x);
wall_length = length(xwall(xwall >= end_x & xwall < current_x));
% Extract the x and y coordinates within the current section
section_x = x_cell{i}.data(section_indices);
section_y = y_cell{i}.data(section_indices);
section_u = u_cell{i}.data(section_indices);
section_v = v_cell{i}.data(section_indices);
section_T = T_cell{i}.data(section_indices);
section_P = P_cell{i}.data(section_indices);
section_Tw = Tw_cell{i}.data(section_indices);
% Create linearly spaced vectors for interpolation
% interp_X = linspace(min(section_x), max(section_x), wall_length * 5);
% interp_Y = linspace(min(section_y), max(section_y), num_y_coordinates(i).num_y * 3);
% [interp_X_grid, interp_Y_grid] = meshgrid(interp_X, interp_Y);
interp_X = linspace(min(section_x), max(section_x), 2500);
interp_Y = linspace(min(section_y), max(section_y),2500*0.694444444);
% Construct meshgrid
[interp_x{j}, interp_y{j}] = meshgrid(interp_X, interp_Y);
% Initialize matrix to hold combined upper and lower wall boundaries
% Interpolation using scatteredInterpolant on normalized coordinates
F_u = scatteredInterpolant(section_x, section_y, section_u, 'natural', 'none');
F_v = scatteredInterpolant(section_x, section_y, section_v, 'natural', 'none');
F_T = scatteredInterpolant(section_x, section_y, section_T, 'natural', 'none');
F_P = scatteredInterpolant(section_x, section_y, section_P, 'natural', 'none');
% Interpolate and re-normalize the data
interp_u{j} = F_u(interp_x{i}, interp_y{i});
interp_v{j} = F_v(interp_x{i}, interp_y{i});
interp_T{j} = F_T(interp_x{i}, interp_y{i});
interp_P{j} = F_P(interp_x{i}, interp_y{i});
% Update current_x for the next section
current_x = end_x;
end
% Update cell arrays to contain the combined matrices
interp_u_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_u);
interp_v_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_v);
interp_T_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_T);
interp_P_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_P);
interp_x_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_x);
interp_y_cell{i} = struct('file_name', x_cell{i}.file_name, 'data', interp_y);
end
folder_path = uigetdir('Select the folder containing the text files');
% Define the file name without leading space characters
% Define the file name without leading space characters
filename = 'StaedyFlowM028Re8000.mat';
% Concatenate the folder path and file name to create the full path
full_path = fullfile(folder_path, filename);
% Save the structures to the file using MAT-file version 7.3
save(full_path, 'interp_u_cell', 'interp_v_cell', 'interp_T_cell', 'interp_P_cell', 'interp_Tw_cell', 'interp_x_cell', 'interp_y_cell', '-v7.3');

サインインしてコメントする。

回答 (2 件)

Mathieu NOE
Mathieu NOE 2024 年 6 月 11 日
hello again
so I looked a bit some of your data , and my first question would be , why not first plot your (scattered) data with quiver or a colored quiver function, before doing some meshgrid & interpolation
and you can see that there are no artifacts in the plot rendering.
then , if you really want to do meshgrid & interpolation, I noticed than 500 or 2500 points of interpolation, nor the method used had a great effect on reducing (to zero) the little "steps" close to the boundary; the only fix I could suggest here is to add a bit of 2D smoothing
here I used this Fex submission, but there are other alternatives if you have your own prefered function for this task : smooth2a - File Exchange - MATLAB Central (mathworks.com)
Quiver plot :
Filled contour plot - before smoothing :
Filled contour plot - after smoothing :
load('matlab.mat')
% Name Size Bytes Class Attributes
%
% section_P 37502x1 300016 double
% section_T 37502x1 300016 double
% section_Tw 37502x1 300016 double
% section_u 37502x1 300016 double
% section_v 37502x1 300016 double
% section_x 37502x1 300016 double
% section_y 37502x1 300016 double
figure(1) % quiver plot (with colors)
quiverC2D(section_x,section_y,section_u,section_v,1);
% Fex : https://fr.mathworks.com/matlabcentral/fileexchange/58527-quiver-magnitude-dependent-color-in-2d-and-3d?s_tid=ta_fx_results
colorbar('vert');
N = 1000; % 2500
interp_X = linspace(min(section_x), max(section_x), N);
interp_Y = linspace(min(section_y), max(section_y),round(N*0.694444444)); % "round" added
% Construct meshgrid
[interp_x, interp_y] = meshgrid(interp_X, interp_Y);
% velocity field
velo = sqrt(section_u.^2+section_v.^2).*sign(section_u);
% NB sign of section_u is used to show forward or backward oriented flow
% Interpolation using scatteredInterpolant on normalized coordinates
method = 'natural';
F_velo = scatteredInterpolant(section_x, section_y, velo, method, 'none');
Z = F_velo(interp_x, interp_y);
figure(2) % contourf plot
grid on
[hq,hqlbl] = contourf(interp_X,interp_Y,Z);
clabel(hq,hqlbl)
colorbar('vert');
% contourf plot with smoothing
ZS = smooth2a(Z,8,8);
figure(3) % contourf plot
grid on
[hq,hqlbl] = contourf(interp_X,interp_Y,ZS);
clabel(hq,hqlbl)
colorbar('vert');
  3 件のコメント
ran
ran 2024 年 6 月 13 日
i thx u allot my frined but i found a new problem, as u see in the pic the intarpulation is problematic even more beacuse it intarpulat from the inlet outlet to the wall. need diper sulution
Mathieu NOE
Mathieu NOE 2024 年 6 月 13 日
how did you generate this image ?

サインインしてコメントする。


ran
ran 2024 年 6 月 13 日
using delaunay
  1 件のコメント
ran
ran 2024 年 6 月 13 日
i solve it using alphaShape

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeVector Fields についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by