How to use the attached excel file below to do a Fourier conversion and display the spectrogram?
1 回表示 (過去 30 日間)
古いコメントを表示
How do I use the attached excel file below to do a Fourier conversion and display the spectrogram?
3 件のコメント
Cris LaPierre
2024 年 5 月 27 日
編集済み: Cris LaPierre
2024 年 5 月 27 日
See this page: Spectrogram Computation with Signal Processing Toolbox
採用された回答
Mathieu NOE
2024 年 5 月 27 日
hello
you can use my "do it all" demo file below
your signal has been detrended and downsampled . But I wonder what you can tell from the spectrogram as the du=ynamic part of your signal is a very low frequency oscillation. i put the frequency axis of the spectrogram in log scale with the hope we would see a bit better what we have below 1 Hz , but even then the frequency resolution is still a bit too coarse (as the time length of the record is also limited)
then we have a bit of noise on top with a energy spectrum that decays with frequency .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = ('backup_5.xlsx');
T = readtable(filename);
time = T.Time;
[h,m,s] = hms(time); % extract hour,minutes,seconds from datetime or duration
s = s +60*m+3600*h; % convert all into seconds
time = s;
signal = T.Voltage_0_Filtered_;
dt = mean(diff(time));
Fs = 1/dt; % sampling rate
[samples,channels] = size(signal);
% optionnal detrend
signal = detrend(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 256*4; %
OVERLAP = 0.95; % must be between 0 and 0.95
% spectrogram dB scale
spectrogram_dB_scale = 100; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 4;
if decim>1
Fs = Fs/decim;
for ck = 1:channels
newsignal(:,ck) = decimate(signal(:,ck),decim);
end
signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)'*1/Fs;
%%%%%% legend structure %%%%%%%%
for ck = 1:channels
leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(2),plot(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
[sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2+ck);
ind = (fsg>0);
imagesc(tsg,fsg(ind),sg_dBpeak(ind,:));colormap('jet');
axis('xy');colorbar('vert');grid on
df = fsg(2)-fsg(1); % freq resolution
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
xlabel('Time (s)');ylabel('Frequency (Hz)');
set(gca,'Yscale','log');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,channels);
s_tmp((1:samples),:) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
16 件のコメント
Mathieu NOE
2024 年 5 月 28 日
forgot to answer your question above, yes you can use the same exact code for another excel file
simply change the filename in this line
filename = ('backup_5.xlsx');
and also double check your new file variable names (headers line in the excel file) : if they are different you have to modify these two lines
time = T.Time;
signal = T.Voltage_0_Filtered_;
(because using readtable stores your data in a table T with filed "Time" and "Voltage_0_Filtered_"
if you are not familiar with tables , have a look at the documentation :
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Spectral Measurements についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!