Training a Convolutional Autoencoder
4 ビュー (過去 30 日間)
古いコメントを表示
I'm trying to train this simple convolutional autoencoder but I'm getting error on the training part. The error says the size of predictions and tragets are not the same. But When I check the network structure using the analyseNetwork function it seems that my input has the same size as my output. I can't find where is the error. Can someone help me?
Follows the code
datastore_MP = datastore("Tiles_MP1_100ov50\", "IncludeSubfolders",true, "LabelSource","foldernames");
images_MP = cell(numel(datastore_MP.Files), 1);
for i = 1:numel(datastore_MP.Files)
img_MP = readimage(datastore_MP, i);
[rows, cols] = size(img_MP);
images_MP{i} = img_MP;
end
encoderBlock = @(block) [
convolution2dLayer(3,2^(3+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)
convolution2dLayer(3,2^(5+block), "Padding",'same')
reluLayer
maxPooling2dLayer(2,"Stride",2)];
net_E = blockedNetwork(encoderBlock,1,"NamePrefix","encoder_");
decoderBlock = @(block) [
transposedConv2dLayer(3,2^(5-block),"Stride",2)
reluLayer
transposedConv2dLayer(3,2^(1-block), "Stride",2)
reluLayer];
net_D = blockedNetwork(decoderBlock,1,"NamePrefix","decoder_");
inputSize = [100 100 1];
CAE = encoderDecoderNetwork(inputSize,net_E,net_D);
analyzeNetwork(CAE)
options = trainingOptions( "adam",...
"Plots","training-progress",...
"MaxEpochs", 100,...
"L2Regularization",0.001);
trainedCAE = trainnet(datastore_MP, CAE, "mse", options);
0 件のコメント
回答 (2 件)
newhere
2024 年 5 月 23 日
Hey, try changing 'trainnet' to 'trainNetwork'.
trainedCAE = trainNetwork(datastore_MP, CAE, "mse", options);
ali kaffashbashi
2024 年 10 月 17 日
I guess it tries to set your label sources (the folder names) as targets during the training. Hence, the input and output sizes become different. I reckon using the following code instead of your training line will solve your problem:
trainedCAE = trainnet(combine(datastore_MP,datastore_MP), CAE, "mse", options);
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Simulink Functions についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!