how to plot the state of polarisation distribution of a c or v point polarisation singularity using quiver plots
    8 ビュー (過去 30 日間)
  
       古いコメントを表示
    
 How to plot this state of polarisation distribution using quiver plots for a c point or v point polarisation singularity. Anyone please help.
How to plot this state of polarisation distribution using quiver plots for a c point or v point polarisation singularity. Anyone please help.採用された回答
  Milan Bansal
      
 2024 年 5 月 28 日
        
      編集済み: Milan Bansal
      
 2024 年 5 月 29 日
  
      Hi Aswathi K,
I understand that you want to plot the ellipses as shown in the image using the quiver plot for a c-point or v-point polarization singularity.
The quiver plot in MATLAB plots arrows with specified directional components at the specified Cartesian coordinates. It cannot plot the directional ellipses. However, for a workaround, you can refer to the following steps and the code snippet given below to plot the ellipses for a c-point polarization singularity:
- Define the grid: Create a grid of points where you want to plot the polarization ellipses.
- Calculate the ellipse parameters: For each point on the grid, calculate the parameters of the polarization ellipse (orientation, major and minor axes).
- Plot the ellipses: Use the plot function to draw ellipses at each grid point.
% Define the grid
[x, y] = meshgrid(-10:1:10, -10:1:10);
% Radius of the circular region
R = 10;
% Create a figure
figure;
hold on;
axis equal;
axis off;
% Define the number of points for plotting ellipses
num_points = 50;
t = linspace(0, 2*pi, num_points);
% Loop through each grid point
for i = 1:numel(x)
    % Coordinates
    xi = x(i);
    yi = y(i);
    % Only plot ellipses within the circular region
    if sqrt(xi^2 + yi^2) <= R
        theta = atan2(yi, xi) / 2; % Orientation of the ellipse
        a = 1 - 0.05 * sqrt(xi^2 + yi^2); % Major axis length 
        b = 0.2 * abs(sin(2*theta)); % Minor axis length
        % Parametric equation of the ellipse
        X = a * cos(t);
        Y = b * sin(t);
        % Rotate the ellipse by angle theta
        R_matrix = [cos(theta) -sin(theta); sin(theta) cos(theta)];
        ellipse = R_matrix * [X; Y];
        % Plot the ellipse at the point (xi, yi)
        plot(xi + ellipse(1, :), yi + ellipse(2, :), 'r', 'LineWidth', 1);
    end
end
% Plot the circular boundary
theta_boundary = linspace(0, 2*pi, num_points);
plot(R * cos(theta_boundary), R * sin(theta_boundary), 'k', 'LineWidth', 2);
Please refer to the following documentation link to learn more about quiver function.
Hope this helps!
3 件のコメント
その他の回答 (0 件)
参考
カテゴリ
				Help Center および File Exchange で Assembly についてさらに検索
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


