Need help solving heat equation using adi method
11 ビュー (過去 30 日間)
古いコメントを表示
Nx = 50;
Ny = 50;
dx = 1.0 / (Nx - 1);
dy = 2.0 / (Ny - 1);
T = 0.00001;
dt = 0.000000001;
Nt = 1000; % Total number of time steps
alpha = 4; % Diffusion coefficient
x = linspace(0, 1, Nx);
y = linspace(0, 2, Ny);
[X, Y] = meshgrid(x, y);
U = Y .* X + 1; % Initial condition
function val = f(x, y, t)
val = exp(t) * cos(pi * x / 2) * sin(pi * y / 4);
end
function U = apply_boundary_conditions(U, x, y, dy, dx)
U(:, 1) = 1; % y=0
U(:, end) = U(:, end-1) + dy .* x'; % y=2
U(1, :) = U(2, :) - dx * y; % x=0
U(end, :) = y' + 1; % x=1
end
% Thomas algorithm
function x = thomas_algorithm(a, b, c, d)
n = length(d);
c_star = zeros(n-1, 1);
d_star = zeros(n, 1);
x = zeros(n, 1);
c_star(1) = c(1) / b(1);
d_star(1) = d(1) / b(1);
for i = 2:n-1
temp = b(i) - a(i-1) * c_star(i-1);
c_star(i) = c(i) / temp;
d_star(i) = (d(i) - a(i-1) * d_star(i-1)) / temp;
end
d_star(n) = (d(n) - a(n-1) * d_star(n-1)) / b(n);
x(n) = d_star(n);
for i = n-1:-1:1
x(i) = d_star(i) - c_star(i) * x(i+1);
end
end
% ADI method
for n = 1:Nt
U = apply_boundary_conditions(U, x, y, dy, dx);
% First half-step: X-direction implicit, Y-direction explicit
for j = 2:Ny-1
a = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
b = (1 + alpha * dt / dx^2) * ones(Nx, 1);
c = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
d = U(j, 2:end-1)' + 0.5 * alpha * dt / dy^2 * (U(j+1, 2:end-1) - 2 * U(j, 2:end-1) + U(j-1, 2:end-1))' + dt * f(x(2:end-1), y(j), n*dt);
U(j, 2:end-1) = thomas_algorithm(a, b(2:end-1), c, d);
end
% Second half-step: Y-direction implicit, X-direction explicit
for i = 2:Nx-1
a = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
b = (1 + alpha * dt / dy^2) * ones(Ny, 1);
c = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
d = U(2:end-1, i) + 0.5 * alpha * dt / dx^2 * (U(2:end-1, i+1) - 2 * U(2:end-1, i) + U(2:end-1, i-1)) + dt * f(x(i), y(2:end-1), n*dt);
U(2:end-1, i) = thomas_algorithm(a, b(2:end-1), c, d);
end
U = apply_boundary_conditions(U, x, y, dy, dx);
end
% Visualization
surf(X, Y, U);
title('ADI Solution at T=' + string(T));
xlabel('X');
ylabel('Y');
zlabel('U');
colorbar;
1 件のコメント
Torsten
2024 年 5 月 12 日
Shouldn't your solution array be three-dimensional instead of two-dimensional ? The way you arranged the code, you only get one solution at time T - the complete history for U is overwritten.
回答 (1 件)
John D'Errico
2024 年 5 月 12 日
You say it works for sufficiently small values dt.
With that exp(t) term in there, do you seriously expect it to work well for large values of dt? I have dreams myself somedays...
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!