Discrete Population Growth Model Plot

7 ビュー (過去 30 日間)
Athanasios Paraskevopoulos
Athanasios Paraskevopoulos 2024 年 5 月 7 日
コメント済み: Torsten 2024 年 5 月 7 日
Use the detailed, discrete model for population growth that follows a variation of the logistic law:
with . Calculate the population after iterations and present a graph of the population evolution."
Let me know if you'd like assistance calculating or graphing the population evolution.
I've written a MATLAB script to simulate a discrete population growth model that follows a variation of the logistic law. My objective is to calculate and visualize the population evolution over time given specific parameters. Here's the code I currently have:
%parameters
N=150;
r=3;
q=0.05;
l=0.1;
H=1;
a=1.5;
t=1;
P(1)=1;
for i=2:N;
P(i)=r*P(i-1)-q*P(i-1)^2-l*(H+P(i-1)^a);
t=t+1;
end;
% Plot population evolution
figure;
plot(P)
P(N)
ans = 29.1358
xlabel('i')
ylabel('P(i)')
title('Population Evolution Over Time');
grid on;
Although this code works, I'd like to optimize it or make improvements. Are there ways to enhance the efficiency or clarity of the code? Any suggestions for improving the logic, structure, or visual presentation would also be greatly appreciated.
Thanks in advance for your help!
  1 件のコメント
Torsten
Torsten 2024 年 5 月 7 日
Maybe it's interesting to additionally compute steady-state for P:
r=3;
q=0.05;
l=0.1;
H=1;
a=1.5;
fun = @(P)P-(r*P-q*P^2-l*(H+P^a));
fzero(fun,30)
ans = 29.1358

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

製品


リリース

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by