現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
remove inf in quiver
1 回表示 (過去 30 日間)
古いコメントを表示
I want quiver(X,Y,u,v), but there's inf entries in u and v at positions x=y. I'm looking for the smartest way to skip these positions with inf u and v and finish the quiver.
x=-5:0.1:5;
y=-5:0.1:5;
[X,Y]=meshgrid(x,y);
1 件のコメント
採用された回答
Star Strider
2024 年 4 月 28 日
Without having ‘u’ and ‘v’ to work with, perhaps something like this using fillmissing (or fillmissing2) —
x=-5:0.1:5;
y=-5:0.1:5;
[X,Y]=meshgrid(x,y);
u = randn(size(X)); % Create 'u'
ix = sub2ind(size(u), 1:size(u,1), 1:size(u,2)); % Linear Inmdex To Create 'u' With Diagnonal 'Inf'
u(ix) = Inf
u = 101x101
Inf -1.4193 1.0497 -0.1100 0.2181 -2.3272 -0.1111 0.6233 -0.4594 0.1195 0.9566 -1.9244 -1.4146 -0.4970 0.0888 1.9743 0.4177 -0.6746 1.0932 1.6275 -0.3020 2.6394 0.0664 -0.9736 0.5496 0.9406 0.7607 -1.1810 0.1057 0.3238
-0.2040 Inf 1.4676 -0.4032 -0.8914 0.6347 0.2933 -0.7958 -0.5473 0.3441 -1.0796 -0.2790 -0.8720 -0.1744 1.0271 0.2945 -0.6075 -0.3061 0.9589 -0.3907 -0.1497 -0.5693 1.9353 -0.9865 1.5239 0.9541 1.2692 0.5700 0.6326 -0.2809
0.4440 0.1059 Inf -0.7628 -1.9011 0.4484 -0.6286 -0.0539 -0.9827 -0.1590 -1.1202 0.9885 -0.1086 -0.2550 0.5774 -0.3649 0.9951 0.3727 0.7720 0.5775 1.4696 -0.2848 0.2413 -0.7008 -1.0953 -1.5702 -0.5243 -0.0585 -2.2009 -2.7097
-1.1253 -0.7258 -0.8600 Inf -0.7818 0.0430 1.3831 0.4638 -1.8246 -0.5975 1.1344 -2.0120 0.3844 -1.4048 -0.7412 -0.7979 -0.3750 1.3553 -0.5779 0.0419 0.5819 1.2048 -0.7356 -0.4025 -0.4867 -2.7108 -0.5462 -0.5905 0.7864 -1.9629
0.7305 1.5534 0.0548 0.6495 Inf 0.9854 0.1087 0.1832 0.1335 2.4604 -0.5619 2.5730 0.3904 1.0272 -0.4547 1.0581 0.3803 0.3861 -0.6168 1.0308 -1.0501 1.1463 -0.4087 -0.2244 -1.0732 1.3175 -0.1320 0.2752 0.8637 -0.0700
1.5087 0.2137 -0.5525 0.6823 1.3532 Inf -0.9245 0.0744 -0.7550 -1.0429 -0.4523 0.1324 0.3328 0.8958 -0.8247 0.0939 -0.9691 -0.3163 0.4888 -0.2547 2.0617 -1.2665 -1.3080 -0.2838 0.4716 0.0971 1.3410 0.4530 -0.5502 -0.3113
-0.7899 -1.3514 1.8762 1.4511 -0.6696 0.6343 Inf 0.5961 0.5598 1.2437 0.3595 -0.3161 0.0932 1.3476 -1.0957 0.1353 0.3317 -1.3635 0.9710 1.6089 -1.9098 0.8884 0.3416 0.1062 0.8726 1.1483 -0.3553 -0.5328 -0.2019 -0.8153
0.7720 0.5451 0.7223 -1.8662 -0.6066 -0.0011 1.0699 Inf -0.3192 1.2113 -0.9188 -0.0333 -0.5733 0.0934 -0.1295 1.4446 -1.1444 1.1519 -0.9562 -0.6240 -0.0261 0.5102 -1.5159 -0.8370 0.7812 1.1397 0.1271 0.5030 -0.8183 1.9334
-1.0089 -1.5652 0.4866 -1.7667 0.1231 0.1948 -1.0970 -0.6456 Inf 0.6980 -1.0084 0.9558 -1.3121 -0.8189 -1.0246 -0.6636 -1.7755 0.1567 0.6217 -0.1159 0.8454 -0.0712 1.8066 -0.7937 0.6682 -0.0229 -1.0841 1.5203 -1.2465 -1.5232
0.1843 1.4161 1.2349 -1.0478 -0.4456 0.2213 0.2403 -0.9400 0.1554 Inf -0.4139 -1.0749 -0.7384 -1.5659 1.6817 -1.2396 -0.7250 0.3642 -0.1862 0.4102 1.0891 -0.9765 0.1297 1.0545 -0.4711 -0.9109 -1.2133 0.7924 -0.2372 -0.9673
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
u(isinf(u)) = NaN % Change 'Inf' To 'NaN'
u = 101x101
NaN -1.4193 1.0497 -0.1100 0.2181 -2.3272 -0.1111 0.6233 -0.4594 0.1195 0.9566 -1.9244 -1.4146 -0.4970 0.0888 1.9743 0.4177 -0.6746 1.0932 1.6275 -0.3020 2.6394 0.0664 -0.9736 0.5496 0.9406 0.7607 -1.1810 0.1057 0.3238
-0.2040 NaN 1.4676 -0.4032 -0.8914 0.6347 0.2933 -0.7958 -0.5473 0.3441 -1.0796 -0.2790 -0.8720 -0.1744 1.0271 0.2945 -0.6075 -0.3061 0.9589 -0.3907 -0.1497 -0.5693 1.9353 -0.9865 1.5239 0.9541 1.2692 0.5700 0.6326 -0.2809
0.4440 0.1059 NaN -0.7628 -1.9011 0.4484 -0.6286 -0.0539 -0.9827 -0.1590 -1.1202 0.9885 -0.1086 -0.2550 0.5774 -0.3649 0.9951 0.3727 0.7720 0.5775 1.4696 -0.2848 0.2413 -0.7008 -1.0953 -1.5702 -0.5243 -0.0585 -2.2009 -2.7097
-1.1253 -0.7258 -0.8600 NaN -0.7818 0.0430 1.3831 0.4638 -1.8246 -0.5975 1.1344 -2.0120 0.3844 -1.4048 -0.7412 -0.7979 -0.3750 1.3553 -0.5779 0.0419 0.5819 1.2048 -0.7356 -0.4025 -0.4867 -2.7108 -0.5462 -0.5905 0.7864 -1.9629
0.7305 1.5534 0.0548 0.6495 NaN 0.9854 0.1087 0.1832 0.1335 2.4604 -0.5619 2.5730 0.3904 1.0272 -0.4547 1.0581 0.3803 0.3861 -0.6168 1.0308 -1.0501 1.1463 -0.4087 -0.2244 -1.0732 1.3175 -0.1320 0.2752 0.8637 -0.0700
1.5087 0.2137 -0.5525 0.6823 1.3532 NaN -0.9245 0.0744 -0.7550 -1.0429 -0.4523 0.1324 0.3328 0.8958 -0.8247 0.0939 -0.9691 -0.3163 0.4888 -0.2547 2.0617 -1.2665 -1.3080 -0.2838 0.4716 0.0971 1.3410 0.4530 -0.5502 -0.3113
-0.7899 -1.3514 1.8762 1.4511 -0.6696 0.6343 NaN 0.5961 0.5598 1.2437 0.3595 -0.3161 0.0932 1.3476 -1.0957 0.1353 0.3317 -1.3635 0.9710 1.6089 -1.9098 0.8884 0.3416 0.1062 0.8726 1.1483 -0.3553 -0.5328 -0.2019 -0.8153
0.7720 0.5451 0.7223 -1.8662 -0.6066 -0.0011 1.0699 NaN -0.3192 1.2113 -0.9188 -0.0333 -0.5733 0.0934 -0.1295 1.4446 -1.1444 1.1519 -0.9562 -0.6240 -0.0261 0.5102 -1.5159 -0.8370 0.7812 1.1397 0.1271 0.5030 -0.8183 1.9334
-1.0089 -1.5652 0.4866 -1.7667 0.1231 0.1948 -1.0970 -0.6456 NaN 0.6980 -1.0084 0.9558 -1.3121 -0.8189 -1.0246 -0.6636 -1.7755 0.1567 0.6217 -0.1159 0.8454 -0.0712 1.8066 -0.7937 0.6682 -0.0229 -1.0841 1.5203 -1.2465 -1.5232
0.1843 1.4161 1.2349 -1.0478 -0.4456 0.2213 0.2403 -0.9400 0.1554 NaN -0.4139 -1.0749 -0.7384 -1.5659 1.6817 -1.2396 -0.7250 0.3642 -0.1862 0.4102 1.0891 -0.9765 0.1297 1.0545 -0.4711 -0.9109 -1.2133 0.7924 -0.2372 -0.9673
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
u = fillmissing(u,'linear') % Use 'fillmissing'
u = 101x101
-0.8520 -1.4193 1.0497 -0.1100 0.2181 -2.3272 -0.1111 0.6233 -0.4594 0.1195 0.9566 -1.9244 -1.4146 -0.4970 0.0888 1.9743 0.4177 -0.6746 1.0932 1.6275 -0.3020 2.6394 0.0664 -0.9736 0.5496 0.9406 0.7607 -1.1810 0.1057 0.3238
-0.2040 -0.6567 1.4676 -0.4032 -0.8914 0.6347 0.2933 -0.7958 -0.5473 0.3441 -1.0796 -0.2790 -0.8720 -0.1744 1.0271 0.2945 -0.6075 -0.3061 0.9589 -0.3907 -0.1497 -0.5693 1.9353 -0.9865 1.5239 0.9541 1.2692 0.5700 0.6326 -0.2809
0.4440 0.1059 0.3038 -0.7628 -1.9011 0.4484 -0.6286 -0.0539 -0.9827 -0.1590 -1.1202 0.9885 -0.1086 -0.2550 0.5774 -0.3649 0.9951 0.3727 0.7720 0.5775 1.4696 -0.2848 0.2413 -0.7008 -1.0953 -1.5702 -0.5243 -0.0585 -2.2009 -2.7097
-1.1253 -0.7258 -0.8600 -0.0567 -0.7818 0.0430 1.3831 0.4638 -1.8246 -0.5975 1.1344 -2.0120 0.3844 -1.4048 -0.7412 -0.7979 -0.3750 1.3553 -0.5779 0.0419 0.5819 1.2048 -0.7356 -0.4025 -0.4867 -2.7108 -0.5462 -0.5905 0.7864 -1.9629
0.7305 1.5534 0.0548 0.6495 0.2857 0.9854 0.1087 0.1832 0.1335 2.4604 -0.5619 2.5730 0.3904 1.0272 -0.4547 1.0581 0.3803 0.3861 -0.6168 1.0308 -1.0501 1.1463 -0.4087 -0.2244 -1.0732 1.3175 -0.1320 0.2752 0.8637 -0.0700
1.5087 0.2137 -0.5525 0.6823 1.3532 0.8098 -0.9245 0.0744 -0.7550 -1.0429 -0.4523 0.1324 0.3328 0.8958 -0.8247 0.0939 -0.9691 -0.3163 0.4888 -0.2547 2.0617 -1.2665 -1.3080 -0.2838 0.4716 0.0971 1.3410 0.4530 -0.5502 -0.3113
-0.7899 -1.3514 1.8762 1.4511 -0.6696 0.6343 0.0727 0.5961 0.5598 1.2437 0.3595 -0.3161 0.0932 1.3476 -1.0957 0.1353 0.3317 -1.3635 0.9710 1.6089 -1.9098 0.8884 0.3416 0.1062 0.8726 1.1483 -0.3553 -0.5328 -0.2019 -0.8153
0.7720 0.5451 0.7223 -1.8662 -0.6066 -0.0011 1.0699 -0.0247 -0.3192 1.2113 -0.9188 -0.0333 -0.5733 0.0934 -0.1295 1.4446 -1.1444 1.1519 -0.9562 -0.6240 -0.0261 0.5102 -1.5159 -0.8370 0.7812 1.1397 0.1271 0.5030 -0.8183 1.9334
-1.0089 -1.5652 0.4866 -1.7667 0.1231 0.1948 -1.0970 -0.6456 -0.0819 0.6980 -1.0084 0.9558 -1.3121 -0.8189 -1.0246 -0.6636 -1.7755 0.1567 0.6217 -0.1159 0.8454 -0.0712 1.8066 -0.7937 0.6682 -0.0229 -1.0841 1.5203 -1.2465 -1.5232
0.1843 1.4161 1.2349 -1.0478 -0.4456 0.2213 0.2403 -0.9400 0.1554 0.8220 -0.4139 -1.0749 -0.7384 -1.5659 1.6817 -1.2396 -0.7250 0.3642 -0.1862 0.4102 1.0891 -0.9765 0.1297 1.0545 -0.4711 -0.9109 -1.2133 0.7924 -0.2372 -0.9673
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Use whatever interpolation method you want with fillmissing. There are several options.
.
4 件のコメント
feynman feynman
2024 年 4 月 28 日
That's wonderful thank you. Is it possible to just leave those inf blank where quiver skips? This code is to show a vector field, but replacing those inf with some random numbers varies the original vector field. I prefer showing the original vector field without changing it and skipping the inf.
Star Strider
2024 年 4 月 28 日
Thank you!
The problem with leaving them blank is that reduces the matrix by 1 in the row size. That makes plotting them with the original (X,Y) matrices inpossible, unless you also delete the corresponding diagonal elements in the (X,Y) matrices.
One way to do that is to use a version of my original code for all the matrices —
x=-5:0.1:5;
y=-5:0.1:5;
[X,Y]=meshgrid(x,y)
X = 101x101
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Y = 101x101
-5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
-4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000
-4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000
-4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000
-4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000
-4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000
-4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000
-4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000
-4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000
-4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
u = randn(size(X)) % Create 'u'
u = 101x101
1.0416 0.4976 -2.2880 -1.0695 -0.8975 -0.4864 0.4944 -1.0780 0.3432 -1.3906 -0.8808 -0.2443 -0.3013 -2.0142 0.9431 1.3709 0.2739 -0.2580 0.1103 -0.7482 -2.0283 0.2410 -1.1488 -0.6631 1.7010 -1.2080 -0.2023 -0.6565 1.0763 -0.0878
1.3527 1.4142 -0.0716 0.3693 1.1543 -0.5840 -0.5118 0.5214 0.4985 0.9944 -0.5191 -0.1141 -0.1074 0.6984 -0.3814 1.0227 0.1055 -1.2210 0.3175 0.8149 -0.3643 -0.1991 0.3324 -0.8687 -0.1069 1.3456 -0.9496 -2.1156 -0.2499 -0.1036
0.4042 1.1743 0.2479 -2.3132 0.1202 -0.7791 -0.0597 0.5700 2.8162 0.3367 -0.8705 -0.3162 0.7878 0.9872 0.3854 -1.1486 -0.6201 -0.5917 1.2014 1.3259 0.1597 -0.1633 -1.8826 1.6549 0.6298 -0.3307 -1.6883 1.7347 0.4500 -0.1470
-0.7712 0.4800 1.1768 -0.1610 1.9788 0.3717 -2.2490 -0.6272 -0.6400 0.0349 0.8406 -0.9202 -0.9976 0.2482 0.4563 1.1361 0.7043 0.8445 0.6107 1.7341 0.5329 0.3174 0.0295 -0.0537 -0.3833 1.5817 0.8829 -0.9185 -0.3143 -1.1993
0.8611 -2.1310 -0.0497 0.4518 -0.7790 0.9275 -1.5043 -0.1288 -1.7874 -0.5009 -1.2705 1.3980 -1.3038 0.2154 -0.4194 0.9504 -0.8425 -0.8133 1.0367 -0.2383 2.5223 1.0083 1.4929 -0.6683 0.3278 0.9372 -0.5033 -0.9065 -2.1159 0.2459
1.2965 -1.5650 -0.8090 -0.1178 1.5025 0.9455 -0.6591 -0.6878 0.7525 -0.1871 -1.1075 -1.2565 -0.0721 -2.1150 -0.7080 1.7625 -2.0217 -1.0684 0.0492 -0.2358 -0.1170 0.7115 1.0866 -1.9088 0.0407 0.4413 1.4944 -0.4083 -1.8841 -0.7866
0.5496 1.6776 0.4096 -0.4035 0.2178 -0.7906 -0.6781 -1.1891 0.3486 0.1296 -0.6972 -0.6551 -0.5619 1.0872 0.4286 -0.0118 1.6627 -1.0485 0.0341 -0.3043 1.4241 -1.2172 -2.2957 0.2514 -0.4173 -1.5030 1.0038 -0.9420 -1.4555 -1.8242
-0.7110 0.4111 -0.3904 1.8031 0.8705 -0.3651 0.2371 -1.9094 0.7863 -0.2426 1.3816 -0.4364 -1.1832 1.3150 -0.0649 -0.8644 -0.3579 -1.6717 -0.1891 -0.2216 1.0190 -1.6997 0.4288 0.3433 -0.9386 0.0676 -0.8425 -0.4357 0.2615 0.8959
-0.3203 0.7464 0.8151 -1.5330 0.3958 0.1805 -0.2196 0.4440 -1.2297 0.9078 1.0784 1.7844 -0.1735 1.2498 -0.7078 -0.7875 -0.0438 0.1261 0.2567 -0.1855 1.1591 1.3024 -1.2647 0.8526 0.5216 -0.0172 0.1848 0.7712 1.0400 0.6685
0.2125 -1.8611 0.1688 -0.4213 1.1177 -1.4098 -0.4382 -0.4309 -0.3949 -0.4577 0.2615 -0.4372 -0.0506 0.0360 -0.5793 -0.5615 1.1188 1.0681 0.0527 -0.6043 -0.3399 -1.3529 -0.3800 0.6060 -0.7423 -0.8488 0.0508 0.5837 0.2594 0.9917
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
ix = sub2ind(size(u), 1:size(u,1), 1:size(u,2)); % Linear Inmdex To Create 'u' With Diagnonal 'Inf'
X(ix) = [];
X = reshape(X,100,[])
X = 100x101
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
-5.0000 -4.9000 -4.8000 -4.7000 -4.6000 -4.5000 -4.4000 -4.3000 -4.2000 -4.1000 -4.0000 -3.9000 -3.8000 -3.7000 -3.6000 -3.5000 -3.4000 -3.3000 -3.2000 -3.1000 -3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000 -2.2000 -2.1000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Y(ix) = [];
Y = reshape(Y,100,[])
Y = 100x101
-4.9000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
-4.8000 -4.8000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000
-4.7000 -4.7000 -4.7000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000 -4.8000
-4.6000 -4.6000 -4.6000 -4.6000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000 -4.7000
-4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000 -4.6000
-4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000 -4.5000
-4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000 -4.4000
-4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000 -4.3000
-4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000 -4.2000
-4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.0000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000 -4.1000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
u(ix) = [];
u = reshape(u, 100,[])
u = 100x101
1.3527 0.4976 -2.2880 -1.0695 -0.8975 -0.4864 0.4944 -1.0780 0.3432 -1.3906 -0.8808 -0.2443 -0.3013 -2.0142 0.9431 1.3709 0.2739 -0.2580 0.1103 -0.7482 -2.0283 0.2410 -1.1488 -0.6631 1.7010 -1.2080 -0.2023 -0.6565 1.0763 -0.0878
0.4042 1.1743 -0.0716 0.3693 1.1543 -0.5840 -0.5118 0.5214 0.4985 0.9944 -0.5191 -0.1141 -0.1074 0.6984 -0.3814 1.0227 0.1055 -1.2210 0.3175 0.8149 -0.3643 -0.1991 0.3324 -0.8687 -0.1069 1.3456 -0.9496 -2.1156 -0.2499 -0.1036
-0.7712 0.4800 1.1768 -2.3132 0.1202 -0.7791 -0.0597 0.5700 2.8162 0.3367 -0.8705 -0.3162 0.7878 0.9872 0.3854 -1.1486 -0.6201 -0.5917 1.2014 1.3259 0.1597 -0.1633 -1.8826 1.6549 0.6298 -0.3307 -1.6883 1.7347 0.4500 -0.1470
0.8611 -2.1310 -0.0497 0.4518 1.9788 0.3717 -2.2490 -0.6272 -0.6400 0.0349 0.8406 -0.9202 -0.9976 0.2482 0.4563 1.1361 0.7043 0.8445 0.6107 1.7341 0.5329 0.3174 0.0295 -0.0537 -0.3833 1.5817 0.8829 -0.9185 -0.3143 -1.1993
1.2965 -1.5650 -0.8090 -0.1178 1.5025 0.9275 -1.5043 -0.1288 -1.7874 -0.5009 -1.2705 1.3980 -1.3038 0.2154 -0.4194 0.9504 -0.8425 -0.8133 1.0367 -0.2383 2.5223 1.0083 1.4929 -0.6683 0.3278 0.9372 -0.5033 -0.9065 -2.1159 0.2459
0.5496 1.6776 0.4096 -0.4035 0.2178 -0.7906 -0.6591 -0.6878 0.7525 -0.1871 -1.1075 -1.2565 -0.0721 -2.1150 -0.7080 1.7625 -2.0217 -1.0684 0.0492 -0.2358 -0.1170 0.7115 1.0866 -1.9088 0.0407 0.4413 1.4944 -0.4083 -1.8841 -0.7866
-0.7110 0.4111 -0.3904 1.8031 0.8705 -0.3651 0.2371 -1.1891 0.3486 0.1296 -0.6972 -0.6551 -0.5619 1.0872 0.4286 -0.0118 1.6627 -1.0485 0.0341 -0.3043 1.4241 -1.2172 -2.2957 0.2514 -0.4173 -1.5030 1.0038 -0.9420 -1.4555 -1.8242
-0.3203 0.7464 0.8151 -1.5330 0.3958 0.1805 -0.2196 0.4440 0.7863 -0.2426 1.3816 -0.4364 -1.1832 1.3150 -0.0649 -0.8644 -0.3579 -1.6717 -0.1891 -0.2216 1.0190 -1.6997 0.4288 0.3433 -0.9386 0.0676 -0.8425 -0.4357 0.2615 0.8959
0.2125 -1.8611 0.1688 -0.4213 1.1177 -1.4098 -0.4382 -0.4309 -0.3949 0.9078 1.0784 1.7844 -0.1735 1.2498 -0.7078 -0.7875 -0.0438 0.1261 0.2567 -0.1855 1.1591 1.3024 -1.2647 0.8526 0.5216 -0.0172 0.1848 0.7712 1.0400 0.6685
1.5556 0.3735 0.4183 -2.1705 0.7528 -0.4665 -0.0809 -1.3804 -0.6506 -1.0935 0.2615 -0.4372 -0.0506 0.0360 -0.5793 -0.5615 1.1188 1.0681 0.0527 -0.6043 -0.3399 -1.3529 -0.3800 0.6060 -0.7423 -0.8488 0.0508 0.5837 0.2594 0.9917
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Then do the same sort of operation with ‘v’.
Another (perhaps preferable) option is to leave them as NaN values. The NaN values will not plot, and any calculations involving them will also be NaN, however if there are any recursive operations involving the matrices, that could leave many more elements a NaN values.
As I mentioned earlier, fillmissing has other options to fill the NaN values if you want to use them, for example a constant value. Interpolating them using linear or other methods is not absolutely necessary.
.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Vector Fields についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)