How to find the distance between two points along a curve?

23 ビュー (過去 30 日間)
Sathiya
Sathiya 2024 年 4 月 26 日
コメント済み: Mathieu NOE 2024 年 4 月 29 日
I have a set of generated X and Y axis data, which have given a curved line. Now, I need to find the distance between two specified points along the curve, not the straight shortest distance between two points but along the curve path. Can someone help me finding this numerically?
  7 件のコメント
Mathieu NOE
Mathieu NOE 2024 年 4 月 26 日
dr represents only the increment of arc length (quite constant in this example)
now you need to do a sum of them - see my answer
Sathiya
Sathiya 2024 年 4 月 29 日
@Sam Chak, dr here gives the shortest distance (displacement) between two points. For eg. lets say, I need the distance along the curve from 1st point and 50th point, this formula finds the straight distance between data points, not along the curve.

サインインしてコメントする。

回答 (2 件)

Mathieu NOE
Mathieu NOE 2024 年 4 月 26 日
編集済み: Mathieu NOE 2024 年 4 月 26 日
hello
try this
th = linspace(-pi/2, pi/2, 100);
R = 200;
X = R * sin(th) ; % X-coordinates
Y = R * cos(th) ; % Y-coordinates
dx = diff(X);
dy = diff(Y);
ds = sqrt(dx.^2+dy.^2); % increment of arc length
s = cumsum(ds); % integration => total arc length
s = [0 s]; % add first point : arc length = 0
% compute arc length between two points (defined by index position)
k1 = 25;
k2 = 59;
d = s(k2) - s(k1)
d = 215.7771
plot(X, Y, 'r.-',X(k1:k2), Y(k1:k2), 'db');
axis square
  4 件のコメント
Torsten
Torsten 2024 年 4 月 27 日
If you have an explicit equation of your curve, you can use the usual formula for arclength:
R = 200;
fun = @(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
fun = function_handle with value:
@(t)sqrt((R*cos(t)).^2+(R*(-sin(t))).^2)
length_of_curve = integral(fun,-pi/2,pi/2)
length_of_curve = 628.3185
2*pi*R/2
ans = 628.3185
Sathiya
Sathiya 2024 年 4 月 29 日
Yes, but I donot have a curve fitted equation for my curve.

サインインしてコメントする。


Walter Roberson
Walter Roberson 2024 年 4 月 27 日
  2 件のコメント
Sathiya
Sathiya 2024 年 4 月 29 日
@Mathieu NOE, understood. Now it is perfect to use then. Thanks Mathieu and all others who spent their time for my problem.
Mathieu NOE
Mathieu NOE 2024 年 4 月 29 日
my pleasure !!

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by