Solving ODE using laplace

14 ビュー (過去 30 日間)
LUCA
LUCA 2024 年 4 月 21 日
編集済み: Torsten 2024 年 4 月 21 日
This is the question I'm struggling on
Using the Laplace transform find the solution for the following ODE:
d^2/dt(y(t)) + 16y(t) = 16[1(t-3) -1(t)]
initial conditions:
y(0) = 0
dy(t)/dt = 0
I have to solve the ODE with laplace and with inverse laplace
Save the inverse laplace in y_sol.
This is what I wrote but it gives me the wrong answer:
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
  7 件のコメント
Sam Chak
Sam Chak 2024 年 4 月 21 日
I didn't simplify the analytical solution from dsolve, but it seems to yield the similar plot as WolframAlpha.
sympref('HeavisideAtOrigin', 1);
syms y(t) t s
dy = diff( y,t);
ddy = diff(dy,t);
massSpring = ddy + 16*y == 16*(heaviside(t-3) - heaviside(t))
massSpring(t) = 
sol = dsolve(massSpring, y(0) == 0, dy(0) == 0)
sol = 
fplot(sol, [0 13]), grid on, xlabel('t'), title('y(t)')
Torsten
Torsten 2024 年 4 月 21 日
編集済み: Torsten 2024 年 4 月 21 日
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(heaviside(t-3)-heaviside(t));
Y1 = laplace(ode,t,s);
ysol1 = subs(Y1,laplace(y,t,s),X);
ysol2 = subs(ysol1,y(0),y0);
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0);
ysol = solve(ysol3, X);
Y = simplify(expand(ysol));
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
hold on
fplot(y_sol,[0 13])
fplot(Check_Laplace_Solution,[0 13])
hold off
grid on

サインインしてコメントする。

回答 (1 件)

Star Strider
Star Strider 2024 年 4 月 21 日
Your code looks correct to me, and when I checked the result with dsolve, its solution agreees with yours —
syms t s y(t) Y X
y0 = 0;
dot_y0 = 0;
dot_y = diff(y,t);
ddot_y = diff(dot_y,t);
ode = ddot_y + 16*y == 16*(1*(t-3)-1*(t))
ode(t) = 
Y1 = laplace(ode,t,s)
Y1 = 
ysol1 = subs(Y1,laplace(y,t,s),X)
ysol1 = 
ysol2 = subs(ysol1,y(0),y0)
ysol2 = 
ysol3 = subs(ysol2, subs(diff(y(t), t), t, 0), dot_y0)
ysol3 = 
ysol = solve(ysol3, X)
ysol = 
Y = simplify(expand(ysol))
Y = 
y_sol = ilaplace(Y)
y_sol = 
Check_Laplace_Solution = dsolve(ode, y(0) == 0, dot_y(0) == 0)
Check_Laplace_Solution = 
.

カテゴリ

Help Center および File ExchangeCreating and Concatenating Matrices についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by