How to compute RMSE on training set and validation set in LSTM regression?

6 ビュー (過去 30 日間)
Yyy
Yyy 2024 年 4 月 15 日
回答済み: Taylor 2024 年 4 月 15 日
Now I'm trying to do seq2seq regression using LSTM. I can't understand the algorithm of RMSE. My input is a 100*1 cell, and evey cell is 2*100 double matrix. The output is a 100*1 cell, and every cell is 1*100 double vector. This means, numFeatures=2 and numResponses=1. I also set validation set by trainingOptions: 'ValidationData',{XValid,YValid}, XValid and YValid both are 100*1 cell. But what confuses me is how to compute RMSE on training set and validation set. Under my understanding, if my input is a 100*1 cell, then my output is also a 100*1 cell. Every cell of output is 1*100 double. So I don't know how to calculate the RMSE between two cells, I mean output and Yvalid. I think it will retrun a 100*1 cell, every cell is a number of the RMSE between two vector, but it returns just a number. Is the mean of every cell or other statistic?Or is there some other algorithm?

回答 (1 件)

Taylor
Taylor 2024 年 4 月 15 日
You'll want to look at the info object returned by trainnet.See this previous post for more info.

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by