How to remove data Overfitting Issue in my training model

1 回表示 (過去 30 日間)
Naitik
Naitik 2024 年 4 月 12 日
回答済み: Shreshth 2025 年 1 月 17 日
I am working on project of facial recognisation of endangered species and I am getting mini batch accuracy of 100% , I am using AlexNet for training. The number of images of endangered species I am using is African elephant with count of 470. Even after do argumantation mini batch accuracy is still same. Help me to remove this overfitting.
Dataset Link: Dataset
Data Training Code:
net = alexnet;
layers = [imageInputLayer([227 227 3])
net(2:end-3)
fullyConnectedLayer(1)
softmaxLayer
classificationLayer()
];
opt = trainingOptions('sgdm', 'MaxEpochs', 100, 'InitialLearnRate', 0.0001,'Plots','training-progress');
training = trainNetwork(trainData,layers,opt);

回答 (1 件)

Shreshth
Shreshth 2025 年 1 月 17 日
Hi Naitik,
I found similar question in the community -
Also, refer to the following MathWorks documentation for more information on how to avoid overfitting:
Hope this helps!

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by