How to remove data Overfitting Issue in my training model
1 回表示 (過去 30 日間)
古いコメントを表示
I am working on project of facial recognisation of endangered species and I am getting mini batch accuracy of 100% , I am using AlexNet for training. The number of images of endangered species I am using is African elephant with count of 470. Even after do argumantation mini batch accuracy is still same. Help me to remove this overfitting.
Data Training Code:
net = alexnet;
layers = [imageInputLayer([227 227 3])
net(2:end-3)
fullyConnectedLayer(1)
softmaxLayer
classificationLayer()
];
opt = trainingOptions('sgdm', 'MaxEpochs', 100, 'InitialLearnRate', 0.0001,'Plots','training-progress');
training = trainNetwork(trainData,layers,opt);
0 件のコメント
回答 (1 件)
Shreshth
2025 年 1 月 17 日
Hi Naitik,
I found similar question in the community -
Also, refer to the following MathWorks documentation for more information on how to avoid overfitting:
Hope this helps!
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!