an ode with arguements
3 ビュー (過去 30 日間)
古いコメントを表示
Here is my function file:
function dfdeta = mufun(eta,f,T)
pr = 1000;
dfdeta = [f(2); f(3); -f(1) * f(3); T(2); -pr*f(:,1)*T(2)];
end
and here is the code to call my function:
clear;
clc;
close all;
guessf = 0.4696;
guessT = .5;
[eta, f, T] = ode45(@mufun, [linspace(0,6,16)], [0; 0; guessf; 0; guessT]);
plot(eta,f);
blasius = table(eta, f(:,1), f(:,2), f(:,3), 'VariableNames',{'eta','f', 'f prime', 'f double prime'})
I was able to figure out the ode45 for just the eta and f variable, but now I have to have f defined in order to solve for T.
0 件のコメント
回答 (3 件)
James Tursa
2024 年 4 月 9 日
編集済み: James Tursa
2024 年 4 月 9 日
Create a new function handle with your extra stuff. E.g.,
mufunT = @(eta,f) mufun(eta,f,guessT)
[eta, f] = ode45(mufunT, [linspace(0,6,16)], [0; 0; guessf]);
But, this assumes you know T in advance. What do you mean by "solve for T"?
Star Strider
2024 年 4 月 9 日
You have five differential equations and three initial conditions.
The initial conditions vector must have the same length as the number of differential equations.
Beyond that, you need to pass ‘T’ as an additional parameter:
[eta, f] = ode45(@(eta,f)mufun(eta,f,guessT), [linspace(0,6,16)], [0; 0; guessf]);
.
6 件のコメント
James Tursa
2024 年 4 月 10 日
@Ray Can you post an image of the differential equations you are trying to solve?
Torsten
2024 年 4 月 10 日
編集済み: Torsten
2024 年 4 月 10 日
You have to define your vector of solution variables as
y(1) = f, y(2) = f', y(3) = f'', y(4) = T, y(5) = T'
and your function as
function dydeta = mufun(eta,y)
pr = 1000;
dydeta = [y(2); y(3); -y(1)*y(3)/2; y(5); -pr/2*y(1)*y(5)];
end
Further, your problem is a boundary value problem, not an initial value problem. Use "bvp4c", not "ode45" to solve.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!