Find Eigenvalues of ODE45 Solution MATLAB

4 ビュー (過去 30 日間)
Jonathan Frutschy
Jonathan Frutschy 2024 年 4 月 9 日
コメント済み: Jonathan Frutschy 2024 年 5 月 3 日
I have the following non-linear ODE:
I have the following ODE45 solution:
fun = @(t,X)odefun(X,K,C,M,F(t),resSize);
[t_ode,X_answer] = ode45(fun,tspan,X_0);
The input matrices are stiffness K(X), damping C, mass M, and force F. resSize is the total number of masses in the system.
I would like to find the system's eigenvalues using either the Jacobian matrix, transfer function, or any other viable method.
I have tried using:
[vector,lambda,condition_number] = polyeig(K(X_answer),C,M);
This is tricky since my K matrix is a function handle of X. In other words, K=@(X). X represents a displacement vector of each mass in the system (x_1(t),x_2(t),...x_resSize(t)), where resSize is the total number of masses. My X_answer matrix is a double with dimensions of t_ode by resSize, where each row is the displacement vector of each mass in double form. Is there some way to substitute X_answer into my function handle for K so I can use polyeig()? If not, how would I go about finding my system's transfer function or Jacobian matrix so that I can find it's eigenvalues?
  7 件のコメント
Sam Chak
Sam Chak 2024 年 5 月 2 日
The input force consists of the sum of a slower wave and a faster wave.
I'm curious about the scientific basis or any journal paper that describes the method of determining the system's resonance by computing the state-dependent eigenvalues at each time step. Is this related to the design of a Tuned Mass Damper for a high-rise building?
Jonathan Frutschy
Jonathan Frutschy 2024 年 5 月 3 日
@Sam Chak This is intended for a classified research project. While I can't divulge the details, a tuned mass damper on a high rise building is a great application!

サインインしてコメントする。

採用された回答

Torsten
Torsten 2024 年 4 月 9 日
編集済み: Torsten 2024 年 4 月 9 日
Your system reads
z1'= z2
z2' = ( F-(c1+c2)*z2-( ((k1*gamma1+k2*gamma2)*z1^2+k1+k2)*z1+(-k2*gamma2*z1^2-k2)*z3 ) )/m1
z3' = z4
z4' = (-(c2+c3)*z4-( (-k2*gamma2*z3^2-k2)*z1+((k2*gamma2+k3*gamma3)*z3^2+k2+k3)*z3))/m2
Linearize the right hand side by computing the 4x4 Jacobian (with respect to z1 - z4) and compute its eigenvalues in the course of the simulation.

その他の回答 (0 件)

製品


リリース

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by