How can I link all the solutions (link between the blue lines)?

2 ビュー (過去 30 日間)
YOUSSEF El MOUSSATI
YOUSSEF El MOUSSATI 2024 年 4 月 3 日
clear all ;
syms V omega
xi = 0.2;
gamma = 0.3;
chi = 0.1e-1;
lambda =1;
eta = 1;
alpha =0.7;
beta = 0.1;
% omega=1.15;
F=0.3;
% Given parameters
k1 = -(1/2).*xi;
k2 = chi./(2.*omega);
k3 = F./(2.*omega);
k4 = (-omega.^2+1)./(2.*omega);
k5 = 3.*gamma./(8.*omega);
k6 = (1./2).*alpha-(1./2).*lambda;
k7 = -(1./8).*beta;
k8 = (1./2).*omega;
k9 = (eta.^2-omega.^2)./(2.*omega);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1 = -k7.^2;
A2 = -2.*k6.*k7;
A3 = -k6.^2-k9.^2;
A4 = k8.^2;
A5 = k5.^2.*k8.^2;
A6 = 2.*k4.*k5.*k8.^2;
A7 = -2.*k2.*k5.*k8.*k9;
A8 = k1.^2.*k8.^2+k4.^2.*k8.^2;
A9 = 2.*k1.*k2.*k7.*k8;
A10 = 2.*k1.*k2.*k6.*k8-2.*k2.*k4.*k8.*k9;
A11 = -k3.^2.*k8.^2;
A12 = k2.^2.*k7.^2;
A13 = 2.*k2.^2.*k6.*k7;
A14 = k2.^2.*k6.^2+k2.^2.*k9.^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the system of equations
% Define the system of equations
EQ = V^22*A1^4*A5+4*V^20*A1^3*A2*A5+(4*A1^3*A3*A5+6*A1^2*A2^2*A5)*V^18+(-A1^3*A4*A6+12*A1^2*A2*A3*A5+4*A1*A2^3*A5)*V^16+(-3*A1^2*A2*A4*A6+6*A1^2*A3^2*A5+12*A1*A2^2*A3*A5+A2^4*A5)*V^14+(-3*A1^2*A3*A4*A6+A1^2*A4^2*A7-3*A1*A2^2*A4*A6+12*A1*A2*A3^2*A5+4*A2^3*A3*A5)*V^12+(A1^2*A4^2*A8-6*A1*A2*A3*A4*A6+2*A1*A2*A4^2*A7+4*A1*A3^3*A5-A2^3*A4*A6+6*A2^2*A3^2*A5)*V^10+(2*A1*A2*A4^2*A8-3*A1*A3^2*A4*A6+2*A1*A3*A4^2*A7-A1*A4^3*A9-3*A2^2*A3*A4*A6+A2^2*A4^2*A7+4*A2*A3^3*A5)*V^8+(2*A1*A3*A4^2*A8-A1*A4^3*A10+A2^2*A4^2*A8-3*A2*A3^2*A4*A6+2*A2*A3*A4^2*A7-A2*A4^3*A9+A3^4*A5+A4^4*A12)*V^6+(-A1*A4^3*A11+2*A2*A3*A4^2*A8-A2*A4^3*A10-A3^3*A4*A6+A3^2*A4^2*A7-A3*A4^3*A9+A4^4*A13)*V^4+(-A2*A4^3*A11+A3^2*A4^2*A8-A3*A4^3*A10+A4^4*A14)*V^2-A3*A4^3*A11;
% Solve the system of equations
sol = solve(EQ,V);
% Display the solutions
disp('Solutions for V:');
Solutions for V:
disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0.1, 1.8, 300); % adjust the range accordingly
figure(11);
hold on;
for i = 1:length(sol)
V_values = double(subs(sol(i), omega, omega_values));
V_values(imag(V_values) ~= 0 | V_values <= 0) = NaN; % Filter out imaginary and non-positive values
plot(omega_values, V_values, 'b-', "linewidth", 2, 'DisplayName', ['Solution ' num2str(i)]);
end
hold off;
box on;
set(gca, "linewidth", 1.5, 'FontSize', 14, 'FontWeight', "bold");
xlabel('\omega', 'fontname', 'Times New Roman', 'FontSize', 16);
ylabel('V', 'fontname', 'Times New Roman', 'FontSize', 16);

採用された回答

Voss
Voss 2024 年 4 月 3 日
One way is to collect all the points to be plotted into two matrices, one for x-coordinates and one for y-coordinates, remove the imaginary and non-positive y values (not just set them to NaN, since that creates gaps), sort the resulting vectors according to x, and plot a single line.
clear all ;
syms V omega
xi = 0.2;
gamma = 0.3;
chi = 0.1e-1;
lambda =1;
eta = 1;
alpha =0.7;
beta = 0.1;
% omega=1.15;
F=0.3;
% Given parameters
k1 = -(1/2).*xi;
k2 = chi./(2.*omega);
k3 = F./(2.*omega);
k4 = (-omega.^2+1)./(2.*omega);
k5 = 3.*gamma./(8.*omega);
k6 = (1./2).*alpha-(1./2).*lambda;
k7 = -(1./8).*beta;
k8 = (1./2).*omega;
k9 = (eta.^2-omega.^2)./(2.*omega);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1 = -k7.^2;
A2 = -2.*k6.*k7;
A3 = -k6.^2-k9.^2;
A4 = k8.^2;
A5 = k5.^2.*k8.^2;
A6 = 2.*k4.*k5.*k8.^2;
A7 = -2.*k2.*k5.*k8.*k9;
A8 = k1.^2.*k8.^2+k4.^2.*k8.^2;
A9 = 2.*k1.*k2.*k7.*k8;
A10 = 2.*k1.*k2.*k6.*k8-2.*k2.*k4.*k8.*k9;
A11 = -k3.^2.*k8.^2;
A12 = k2.^2.*k7.^2;
A13 = 2.*k2.^2.*k6.*k7;
A14 = k2.^2.*k6.^2+k2.^2.*k9.^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define the system of equations
EQ = V^22*A1^4*A5+4*V^20*A1^3*A2*A5+(4*A1^3*A3*A5+6*A1^2*A2^2*A5)*V^18+(-A1^3*A4*A6+12*A1^2*A2*A3*A5+4*A1*A2^3*A5)*V^16+(-3*A1^2*A2*A4*A6+6*A1^2*A3^2*A5+12*A1*A2^2*A3*A5+A2^4*A5)*V^14+(-3*A1^2*A3*A4*A6+A1^2*A4^2*A7-3*A1*A2^2*A4*A6+12*A1*A2*A3^2*A5+4*A2^3*A3*A5)*V^12+(A1^2*A4^2*A8-6*A1*A2*A3*A4*A6+2*A1*A2*A4^2*A7+4*A1*A3^3*A5-A2^3*A4*A6+6*A2^2*A3^2*A5)*V^10+(2*A1*A2*A4^2*A8-3*A1*A3^2*A4*A6+2*A1*A3*A4^2*A7-A1*A4^3*A9-3*A2^2*A3*A4*A6+A2^2*A4^2*A7+4*A2*A3^3*A5)*V^8+(2*A1*A3*A4^2*A8-A1*A4^3*A10+A2^2*A4^2*A8-3*A2*A3^2*A4*A6+2*A2*A3*A4^2*A7-A2*A4^3*A9+A3^4*A5+A4^4*A12)*V^6+(-A1*A4^3*A11+2*A2*A3*A4^2*A8-A2*A4^3*A10-A3^3*A4*A6+A3^2*A4^2*A7-A3*A4^3*A9+A4^4*A13)*V^4+(-A2*A4^3*A11+A3^2*A4^2*A8-A3*A4^3*A10+A4^4*A14)*V^2-A3*A4^3*A11;
% Solve the system of equations
sol = solve(EQ,V);
% % Display the solutions
% disp('Solutions for V:');
% disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0.1, 1.8, 300); % adjust the range accordingly
figure(11);
hold on;
% collect x and y points for all solutions in matrices,
% one column per solution
Nsol = numel(sol);
x_plot = repmat(omega_values(:),1,Nsol);
y_plot = zeros(numel(omega_values),Nsol);
for i = 1:Nsol
y_plot(:,i) = double(subs(sol(i), omega, omega_values));
end
% remove imaginary and non-positive values
% (makes x_plot and y_plot into row vectors)
idx = imag(y_plot) ~= 0 | y_plot <= 0;
x_plot(idx) = [];
y_plot(idx) = [];
% sort by increasing x_plot values
[x_plot,idx] = sort(x_plot);
y_plot = y_plot(idx);
% plot
plot(x_plot, y_plot, 'b-', "linewidth", 2);
hold off;
box on;
set(gca, "linewidth", 1.5, 'FontSize', 14, 'FontWeight', "bold");
xlabel('\omega', 'fontname', 'Times New Roman', 'FontSize', 16);
ylabel('V', 'fontname', 'Times New Roman', 'FontSize', 16);
  3 件のコメント
Voss
Voss 2024 年 4 月 3 日
編集済み: Voss 2024 年 4 月 3 日
You're welcome! Any questions, let me know.
YOUSSEF El MOUSSATI
YOUSSEF El MOUSSATI 2024 年 4 月 3 日
Ok, you're welcome

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGet Started with MATLAB についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by