caculate confidence interval from customized pdf

2 ビュー (過去 30 日間)
苏越 徐
苏越 徐 2024 年 3 月 19 日
コメント済み: 苏越 徐 2024 年 3 月 19 日
Hi
I'm wondering How can I caculate the confidence interval of customized pdf e.g. Gaussian mixture distribution?
pdf=@(x) w1*normpdf(x,mu1,sigma1)+w2*normpdf(x,mu2,sigma2);
cdf=@(x) integral(pdf,-Inf,x);
As icdf function only support specified distribution, I'm wondering how to caculate the shortest confidence interval?

採用された回答

David Goodmanson
David Goodmanson 2024 年 3 月 19 日
編集済み: David Goodmanson 2024 年 3 月 19 日
Hello SX,
Ordinarily to find the cdfs you would have to use numerical integration. In this case for the normal distributions, the cdf function is available. Then you can interpolate using the cdf as the independent variable. Here is an example. In the plot you get a wide minimum which you might expect.
mu1 = 1;
mu2 = 2;
sig1 = 1;
sig2 = 3;
w1 = .3;
w2 = .7;
c = .9; % confidence span, there is probably a better name for this
x = -20:.00001:20;
cdf = w1*normcdf(x,mu1,sig1) +w2*normcdf(x,mu2,sig2);
cdn = linspace(min(cdf),max(cdf)-c,1e4);
xdn = interp1(cdf,x,cdn);
cup = linspace(min(cdf)+c,max(cdf),1e4);
xup = interp1(cdf,x,cup);
figure(1); grid on
plot(xup-xdn)
[x0 ind] = min(xup-xdn);
xdn(ind) % lower end of confidence interval
xup(ind) % upper end of confidence interval
cdn(ind) % lower cdf value
cup(ind) % upper cdf value
% ans = -2.4087
% ans = 6.3858
% ans = 0.0497
% ans = 0.9497
D = xup(ind)-xdn(ind) % the result
cup(ind)-cdn(ind) % check, should be c = confidence span
% D = 8.7945
% ans = 0.9000
% try a different case, get a larger confidence interval
xtest = interp1(cdf,x,[.07 .97]);
Dtest = diff(xtest)
% xtest = -1.8602 7.1554
% Dtest = 9.0156
  3 件のコメント
David Goodmanson
David Goodmanson 2024 年 3 月 19 日
See what you think of the modified answer above
苏越 徐
苏越 徐 2024 年 3 月 19 日
Thank you David! It' good idea to narrow the range for ends of confidence span and then search for the shortest.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDescriptive Statistics and Visualization についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by