Writing unit vector with the terms in an equation

2 ビュー (過去 30 日間)
Ismita
Ismita 2024 年 3 月 5 日
移動済み: Sabin 2024 年 3 月 22 日
unit_y_vector = (mean_speed_T * mean_speed_N)/(magnitude_U0_mean_RTN)^2 - (mean_speed_R * mean_speed_T)/(magnitude_U0_mean_RTN)^2;
unit_y_vector = (mean_speed_T * mean_speed_N)/(magnitude_U0_mean_RTN)^2 \hat{R}- (mean_speed_R * mean_speed_T)/(magnitude_U0_mean_RTN)^2 \hat{N};
if first term in the right hand side is along \hat{R} and the second term is along \hat{N}, should I write the unit vectors/expression for those unit vectors with the terms in the equation? Sometimes I see the vector comes from the matrix, we don't need to write. What to do here? I am beginner. Thanks!

回答 (1 件)

Manikanta Aditya
Manikanta Aditya 2024 年 3 月 5 日
移動済み: Sabin 2024 年 3 月 22 日
Hey,
Yes, you should write the unit vectors with the terms in the equation. The unit vectors help to specify the direction of each term in the vector equation.
unit_y_vector = \hat{R} * (mean_speed_T * mean_speed_N)/(magnitude_U0_mean_RTN)^2 - \hat{N} * (mean_speed_R * mean_speed_T)/(magnitude_U0_mean_RTN)^2;
Sometimes, when the vector comes from a matrix, the unit vectors are implicit in the matrix’s structure, so they don’t need to be written explicitly. However, as a beginner, it’s a good practice to write them out as it helps you understand the directionality of each term. As you get more comfortable with vectors and matrices, you’ll get a better sense of when you can leave them implicit.
Thanks!
  1 件のコメント
Ismita
Ismita 2024 年 3 月 16 日
移動済み: Sabin 2024 年 3 月 22 日

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeJust for fun についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by