Boundary Value Problem based on specific problem
    3 ビュー (過去 30 日間)
  
       古いコメントを表示
    
clear all;
close all;
clc;
%% INPUTs:
f = 6;           % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02;       % Initial Displacement (in m)
v0 = 0.25;       % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f   % Natural Circular Frequency or Angular Frequency (rad/s)
T = 1/f         % Fundamental Time-Period (sec)
A = sqrt((x0^2) + (v0/wn)^2)    % Amplitude (m)
vm = A*wn       % Maximum Velocity (m/s)
am = vm*wn      % Maximum Acceleration (m/s/s)
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
x = dsolve(E)   % C1 & C2 are constant and can be determined by BCs
%% I need to find constant C1 & C2 through boundary value problem as x(0) = 0 & x'(0)=0. Can someone help me out?
0 件のコメント
採用された回答
  Torsten
      
      
 2024 年 2 月 28 日
        
      移動済み: Torsten
      
      
 2024 年 2 月 28 日
  
      x(0) = 0 gives C1 = 0, x'(0) = 0 gives C2 = 0. Thus the solution of your equation is x = 0 for all t.
2 件のコメント
  Torsten
      
      
 2024 年 2 月 29 日
				clear all;
close all;
clc;
%% INPUTs:
f = 6;           % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02;       % Initial Displacement (in m)
v0 = 0.25;       % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f   % Natural Circular Frequency or Angular Frequency (rad/s)
T = 1/f         % Fundamental Time-Period (sec)
A = sqrt((x0^2) + (v0/wn)^2)    % Amplitude (m)
vm = A*wn       % Maximum Velocity (m/s)
am = vm*wn      % Maximum Acceleration (m/s/s)
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
dX = diff(X,t);
conds =[X(0)==0.02,dX(0)==0.25];
x = dsolve(E,conds)   % C1 & C2 are constant and can be determined by BCs
fplot(x,[0 1])
その他の回答 (0 件)
参考
カテゴリ
				Help Center および File Exchange で Equation Solving についてさらに検索
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




