Boundary Value Problem based on specific problem

1 回表示 (過去 30 日間)
Parvesh Deepan
Parvesh Deepan 2024 年 2 月 28 日
コメント済み: Torsten 2024 年 2 月 29 日
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
wn = 37.6991
T = 1/f % Fundamental Time-Period (sec)
T = 0.1667
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
A = 0.0211
vm = A*wn % Maximum Velocity (m/s)
vm = 0.7943
am = vm*wn % Maximum Acceleration (m/s/s)
am = 29.9462
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
Phi = 71.6559
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
x = dsolve(E) % C1 & C2 are constant and can be determined by BCs
x = 
%% I need to find constant C1 & C2 through boundary value problem as x(0) = 0 & x'(0)=0. Can someone help me out?

採用された回答

Torsten
Torsten 2024 年 2 月 28 日
移動済み: Torsten 2024 年 2 月 28 日
x(0) = 0 gives C1 = 0, x'(0) = 0 gives C2 = 0. Thus the solution of your equation is x = 0 for all t.
  2 件のコメント
Parvesh Deepan
Parvesh Deepan 2024 年 2 月 29 日
sorry my bad.
The BCs are x(0) = 0.02 & x'(0) = 0.25
Torsten
Torsten 2024 年 2 月 29 日
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
wn = 37.6991
T = 1/f % Fundamental Time-Period (sec)
T = 0.1667
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
A = 0.0211
vm = A*wn % Maximum Velocity (m/s)
vm = 0.7943
am = vm*wn % Maximum Acceleration (m/s/s)
am = 29.9462
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
Phi = 71.6559
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
dX = diff(X,t);
conds =[X(0)==0.02,dX(0)==0.25];
x = dsolve(E,conds) % C1 & C2 are constant and can be determined by BCs
x = 
fplot(x,[0 1])

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeParticle & Nuclear Physics についてさらに検索

製品


リリース

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by