ODE45 diverges on specific initial conditions
4 ビュー (過去 30 日間)
古いコメントを表示
hi guys,
I'm trying to run the code added below and it seems to work just fine, the only problem is that if I set my initial conditions to be [0 0 0 0] I get y to be a matrix of NaN.
When I change the initial conditions to [0.001 0 0 0] (meaning changing only the first initial condition) it works just fine. I'm guessing somwhere in the odeFun something is divided by the first initial condition.
Anybody knows if this is solvable somehow?
Thanks!
clc,clear, close
% Define symbolic variables
syms theta1(t) theta2(t) delta_t1 delta_t2
% Define parameters
m1 = 0.15; m2 = 0.15;
R = 0.2; g = 9.81;
d = 0.15; a1 = 0.05; a2 = 0.05;
k = 1.5; l0 = 0.01;
c_l = 0.1; c_0 = 0.001;
M1 = 0; M2 = 0; p = 0;
% Define expressions
theta1_dot = diff(theta1, t);
theta2_dot = diff(theta2, t);
r1 = [a1*sin(theta1), a1*cos(theta1)];
r2 = [d+a2*sin(theta2), a2*cos(theta2)];
l = norm(r2-r1);
e_l = (r2-r1)/l;
T = 0.5*m1*(R*theta1_dot)^2 + 0.5*m2*(R*theta2_dot)^2;
V = 0.5*k*(l-l0)^2 + m1*g*R*(1-cos(theta1)) + m2*g*R*(1-cos(theta2));
D = 0.5*(c_l*(diff(l, t))^2 + c_0*(theta1_dot)^2 + c_0*(theta2_dot)^2);
Fn1 = k*(l-l0)*e_l;
Fn2 = -Fn1;
drn1 = diff(r1,theta1)*delta_t1;
drn2 = diff(r2,theta2)*delta_t2;
w4 = Fn1*drn1.';
w5 = Fn2*drn2.';
w1 = M1*delta_t1;
w2 = M2*delta_t2;
w3 = 0.5*p*cos(theta1)*(R^2-a1^2)*delta_t1;
W = w1+w2+w3+w4+w5;
Q1 = diff(W,delta_t1);
Q2 = diff(W,delta_t2);
L = T-V;
% Define equations
eq1 = Q1 == diff(diff(L,theta1_dot),t)-diff(L,theta1)+diff(D,theta1_dot);
eq2 = Q2 == diff(diff(L,theta2_dot),t)-diff(L,theta2)+diff(D,theta2_dot);
% Solve ODEs
[F,~] = odeToVectorField(eq1, eq2);
odeFun = matlabFunction(F, 'Vars', {t,'Y'});
[t, y] = ode45(odeFun,[0 100],[0.0001 0 0 0]);
plot(t, y);
legend({'$\theta1$', '$\dot{\theta1}$', '$\theta2$', '$\dot{\theta2}$'},'FontSize', 16,'Interpreter', 'latex','Location', 'best');
8 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

