what's the relation between A , B and M,G for this Nonlinear system of equation ?

1 回表示 (過去 30 日間)
A*sin(3*Phi)-B*sin(Phi) = G ;
A*cos(3*Phi)-B*cos(Phi) = M ;

採用された回答

Torsten
Torsten 2024 年 2 月 11 日
A^2 + B^2 - 2*A*B*cos(2*Phi) = G^2 + M^2
  9 件のコメント
Torsten
Torsten 2024 年 2 月 11 日
編集済み: Torsten 2024 年 2 月 11 日
If each of the equations could be solved uniquely for Phi, you could get what you want.
Assume that the first equation would uniquely yield Phi = f(A,B,G) and the second equation would uniquely yield Phi = g(A,B,M), then f(A,B,G) - g(A,B,M) = 0 would be your relation. But unfortunately, the equations cannot be solved uniquely for Phi.
syms A B G M Phi
eqn = A*sin(3*Phi)-B*sin(Phi) == G ;
sol1 = solve(eqn,Phi,'ReturnConditions',1,'MaxDegree',3)
sol1 = struct with fields:
Phi: [6×1 sym] parameters: k conditions: [6×1 sym]
sol1.Phi
ans = 
sol1.conditions
ans = 
YOUSSEF El MOUSSATI
YOUSSEF El MOUSSATI 2024 年 2 月 11 日
Ok , thanks for your help , it's very important to me

サインインしてコメントする。

その他の回答 (1 件)

John D'Errico
John D'Errico 2024 年 2 月 11 日
編集済み: John D'Errico 2024 年 2 月 11 日
This is not even remotely a question about MATLAB. As such, it should arguably not even be on Answers. But I have a minute to respond, so I will choose to do so.
Trivial! What is the relation? Admittedly, the relation itself is a slightly complex thing, composed of two equations. The relations are:
A*sin(3*Phi)-B*sin(Phi) = G
A*cos(3*Phi)-B*cos(Phi) = M
which is exactly what you wrote.
It is not a nonlinear system of equations though. Not at all! Phi there is simply a parameter, not one of the parameters involved. That makes your problem fully a LINEAR system of equations. As such, if you want to view it in that form, then we could write:
M = [sin(3*Phi), -sin(Phi); ..
cos(3*Phi), -cos(Phi)]
So M is a matrix function of the parameter Phi. Biven the matrix M, then we could write:
M*[A;B] = [G;M]
There is no simpler relation between those variables. And it is NOT at all nonlinear. Purely linear.
  1 件のコメント
YOUSSEF El MOUSSATI
YOUSSEF El MOUSSATI 2024 年 2 月 11 日
Ok ,thanks for your answer , yes this system is linear but the parameters A,B and C,D are Nonlinear A=f(x^3,x^2,x); B=g(x^3,x^2,x); C=h(x^3,x^2,x); D=l(x^3,x^2,x);

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by