Could anyone help me in fixing the problem in my code for solving the initial value problem numerically: y'=y^2, y(0)=1?
1 回表示 (過去 30 日間)
古いコメントを表示
clc;
close all;
clear all;
syms w wp wpp wppp
% Define the differential equation: y' = y^2, y(0)=1, t in [0,1)
f = @(t,y) y^2;
fp = @(t,y) 2*y^3;
fpp = @(t,y) 6*y^4;
fppp = @(t,y) 24*y^5;
% Choose the step size h and create the vector
% of t values from t0 to tf incremented by h
t0 = 0;
tf = 0.9;
h = 0.09;
t = t0:h:tf;
% Plot the approximation with the exact solution
t_exact = t0:h:tf;
y_exact = 1./(1-t_exact);
% Initialize a vector of y values as a zero vector
% and set the initial value: y(t0) = y0
y = zeros(size(t));
y0 = 0.5;
y(1) = y0;
for n = 1:(length(t)-1)
k = f(t(n),y(n));
kp = fp(t(n),y(n));
kpp = fpp(t(n),y(n));
kppp = fppp(t(n),y(n));
eqn1 = f( t(n)+h, y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w - ((3*h)/28)*wp + ((h^2)/84)*wpp - ((h^3)/1680)*wppp ) ) == w;
eqn2 = fp( t(n)+h, y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w - ((3*h)/28)*wp + ((h^2)/84)*wpp - ((h^3)/1680)*wppp ) ) == wp;
eqn3 = fpp( t(n)+h, y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w - ((3*h)/28)*wp + ((h^2)/84)*wpp - ((h^3)/1680)*wppp ) ) == wpp;
eqn4 = fppp( t(n)+h, y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w - ((3*h)/28)*wp + ((h^2)/84)*wpp - ((h^3)/1680)*wppp ) ) == wppp;
sol = solve([eqn1, eqn2, eqn3, eqn4], [w, wp, wpp, wppp])
Sol1 = sol.w;
Sol2 = sol.wp;
Sol3 = sol.wpp;
Sol4 = sol.wppp;
y(n+1) = y(n) + h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*Sol1 - ((3*h)/28)*Sol2 + ((h^2)/84)*Sol3 - ((h^3)/1680)*Sol4 )
end
y1 = zeros(size(t));
y01 = 0.5;
y1(1) = y01;
for n = 1:(length(t)-1)
k11 = f(t(n),y1(n));
y1(n+1)=y1(n) + h*k11+(h^2/2)*fp(t(n),y1(n))+(h^3/6)*fpp(t(n),y1(n))+(h^4/24)*fppp(t(n),y1(n))
end
figure(1)
plot(t,y,'r*','linewidth',4)
hold on
plot(t,y1,'g','linewidth',4)
hold on
plot(t_exact,y_exact,'b','linewidth',2)
legend('Obreschkoff solution of order 4','Taylor solution of order 4','Exact solution')
grid on
xlabel('t','fontsize',14);
ylabel('y(t)','fontsize',14);
title('Exact vs. Numerical Solutions','fontsize',14);
h1=gca;
set(h1,'fontsize',14);
fh1 = figure(1);
set(fh1, 'color', 'white')
E1 = abs(y_exact - y)
E2 = abs(y_exact - y1)
figure(2)
plot(t,E1,'r','linewidth',2);
hold on
plot(t,E2,'b','linewidth',2);
legend('Obreschkoff method of order 4','Taylor method of order 4')
grid on
xlabel('t','fontsize',14);
ylabel('Error','fontsize',14);
title('Absolute error','fontsize',14);
h2=gca;
set(h2,'fontsize',14);
fh2 = figure(2);
set(fh2, 'color', 'white')
4 件のコメント
James Tursa
2024 年 1 月 29 日
Th@Iqbal Batiha The title of this post is to solve the problem numerically, but your code makes an attempt at some type of symbolic solution. So, which is it that you want? A numeric or a symbolic solution?
採用された回答
Alan Stevens
2024 年 1 月 29 日
Here's an attempt using fminsearch.
I don't know anything about the Obreschkoff method, so couldn't say if your equations are incorrect or my modifications have messed things up!
Note that your "exact" equation is only true when y(0) = 1, not when y(0) = 0.5.
% Define the differential equation: y' = y^2, y(0)=1, t in [0,1)
f = @(y) y^2;
fp = @(y) 2*y^3;
fpp = @(y) 6*y^4;
fppp = @(y) 24*y^5;
% Choose the step size h and create the vector
% of t values from t0 to tf incremented by h
t0 = 0;
tf = 0.9;
h = 0.09;
t = t0:h:tf;
% Plot the approximation with the exact solution
y_exact = 1./(1-t); % Only true if y(0) = 1
% Initialize a vector of y values as a zero vector
% and set the initial value: y(t0) = y0
y = zeros(size(t));
y0 = 1;
y(1) = y0;
w = [0; 1; 2; 3];
for n = 1:(length(t)-1)
k = f(y(n));
kp = fp(y(n));
kpp = fpp(y(n));
kppp = fppp(y(n));
eqn = @(w) abs(f( y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w(1) - ((3*h)/28)*w(2) + ((h^2)/84)*w(3) - ((h^3)/1680)*w(4) ) ) - w(1)) ...
+abs(fp( y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w(1) - ((3*h)/28)*w(2) + ((h^2)/84)*w(3) - ((h^3)/1680)*w(4) ) ) - w(2)) ...
+abs(fpp( y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w(1) - ((3*h)/28)*w(2) + ((h^2)/84)*w(3) - ((h^3)/1680)*w(4) ) ) - w(3)) ...
+abs(fppp( y(n)+ h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*w(1) - ((3*h)/28)*w(2) + ((h^2)/84)*w(3) - ((h^3)/1680)*w(4) ) ) - w(4));
Sol = fminsearch(eqn, w);
y(n+1) = y(n) + h*( (1/2)*k + ((3*h)/28)*kp + ((h^2)/84)*kpp + ((h^3)/1680)*kppp ) ...
+ h*( (1/2)*Sol(1) - ((3*h)/28)*Sol(2) + ((h^2)/84)*Sol(3) - ((h^3)/1680)*Sol(4) );
end
y1 = zeros(size(t));
y01 = 1;
y1(1) = y01;
for n = 1:(length(t)-1)
k11 = f(y1(n));
y1(n+1)=y1(n) + h*k11+(h^2/2)*fp(y1(n))+(h^3/6)*fpp(y1(n))+(h^4/24)*fppp(y1(n));
end
figure(1)
plot(t,y,'r*','linewidth',4)
hold on
plot(t,y1,'bo','linewidth',4)
hold on
plot(t,y_exact,'g','linewidth',2)
legend('Obreschkoff solution of order 4','Taylor solution of order 4','Exact solution')
grid on
xlabel('t','fontsize',14);
ylabel('y(t)','fontsize',14);
title('Exact vs. Numerical Solutions','fontsize',14);
h1=gca;
set(h1,'fontsize',14);
fh1 = figure(1);
set(fh1, 'color', 'white')
E1 = abs(y_exact - y);
E2 = abs(y_exact - y1);
figure(2)
plot(t,E1,'r*','linewidth',2);
hold on
plot(t,E2,'bo','linewidth',2);
legend('Obreschkoff method of order 4','Taylor method of order 4')
grid on
xlabel('t','fontsize',14);
ylabel('Error','fontsize',14);
title('Absolute error','fontsize',14);
h2=gca;
set(h2,'fontsize',14);
fh2 = figure(2);
set(fh2, 'color', 'white')
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!