how to get one shape out of multiple shapes
5 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I have multiple shapes I need to merge into a single shape, because I have sets of shapes those I have to merge and compare with each other (put into a one plot).
the set of data is attached and I can plot it like this:
plot(X(:, [1:end 1])', Y(:, [1:end 1])')
let me know, if you know how to do it, thanks.
I got this shape using patch, but it generated a Patch file that I cannot use.
Ideally, I would like my data was interpolated so the final shape will not have sharp edges but be smooth and go down to Y=0.
Help me handle that too if you can. thanks

1 件のコメント
Dyuman Joshi
2023 年 12 月 13 日
"I got this shape using patch, but it generated a Patch file that I cannot use."
You can't use the patch object or you can't use the output generated?
What is the expected output? It will be helpful if you can show an illustration.
採用された回答
DGM
2023 年 12 月 13 日
patch() doesn't create a file. If you created a file somehow, nobody knows how you did it.
I'm not sure where this is going, but here's a guess.
% loads X,Y
load data.mat
% get rid of NaNs
xhasnans = any(isnan(X),2);
yhasnans = any(isnan(Y),2);
goodrows = ~(xhasnans | yhasnans);
X = X(goodrows,:);
Y = Y(goodrows,:);
% find convex hull
K = convhull(double(X),double(Y));
Xh = X(K);
Yh = Y(K);
% plot the convex hull, show the curve endpoint
plot(Xh,Yh); hold on
plot(X(1),Yh(1),'o')
% get rid of the base of the curve
Xh = Xh(3:end-1);
Yh = Yh(3:end-1);
% extrapolate to Y=0 from last 10 datapoints
Np = 10; % number of points to use
% the right-hand part of the curve
Yhr = Yh(1:Np);
Xhr = Xh(1:Np);
Yexr = [0;Yhr];
Xexr = interp1(Yhr,Xhr,Yexr,'linear','extrap');
% the left-hand part of the curve
Yhl = Yh(end-Np+1:end);
Xhl = Xh(end-Np+1:end);
Yexl = [Yhl;0];
Xexl = interp1(Yhl,Xhl,Yexl,'linear','extrap');
% put them back together
Xex = [Xexr; Xh(Np+1:end-Np); Xexl];
Yex = [Yexr; Yh(Np+1:end-Np); Yexl];
% close the curve (if needed
Xex = Xex([1:end 1]);
Yex = Yex([1:end 1]);
% plot the extraploated curve, show the endpoint
plot(Xex,Yex,'--')
plot(Xex(1),Yex(1),'*')
3 件のコメント
DGM
2023 年 12 月 14 日
I wouldn't call it a guess. I picked it manually based on the given hull. For a different set of polygons, I don't know that it would be consistently correct.
その他の回答 (2 件)
Mathieu NOE
2023 年 12 月 13 日
hello
try this

x = double(X(:));
y = double(Y(:));
% remove nan
id = isnan(x) & isnan(y);
x(id) = [];
y(id) = [];
% k = boundary(___,s) specifies shrink factor s using any of the previous syntaxes.
% s is a scalar between 0 and 1. Setting s to 0 gives the convex hull,
% and setting s to 1 gives a compact boundary that envelops the points.
% The default shrink factor is 0.5.
s = 0.1;
k = boundary(x,y,s);
x_out = x(k);
y_out = y(k);
% find lower left "corner" point to make extrapolation towards Y = 0
[mx,ix1] = min(x_out);
my = y_out(ix1);
ind = find(x_out<(mx+1));
slope = mean(diff(y_out(ind))./diff(x_out(ind)));
x_lower_left = mx - my/slope;
% find lower right "corner" point to make extrapolation towards Y = 0
[mx,ix2] = max(x_out);
my = y_out(ix2);
ind = find(x_out>(mx-1));
slope = mean(diff(y_out(ind))./diff(x_out(ind)));
x_lower_right = mx - my/slope;
% add those two new points to x_out and y_out
x_out2 = [x_out(1:ix2-1); x_lower_right; x_out(ix2:ix1); x_lower_left; x_out(ix1+1:end) ] ;
y_out2 = [y_out(1:ix2-1); 0 ; y_out(ix2:ix1); 0 ; y_out(ix1+1:end) ] ;
plot(x,y, '*', x_out, y_out, '-*r', x_out2, y_out2, '-g')
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Graphics Performance についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!