Plotting is not quie correct

2 ビュー (過去 30 日間)
Matthew Palermo
Matthew Palermo 2023 年 12 月 9 日
コメント済み: Walter Roberson 2023 年 12 月 10 日
I am trying to plot the temeprature curves for emissivity against the wavelength using Planck's Law. The plot I am getting is pretty close, except there is no decrease in emissivity as the wavelength gets very large. I can't tell if it is the way the for loops are running or the equations I typed in. I have attachedmy current code and the graph I am trying to duplicate for clarification. Any help is greatly appreciated. Thanks!
C1 = 3.742*10^8; % First constant W-micron^4/m^2
C2 = 1.4388*10^4; %Second constant microns-K
T = 100:100:6000; %Temperature in Kelvins
lambda = 0.1:0.1:25; %wavelength in microns
lengthT = length(T);
length_L = length(lambda);
E = zeros(lengthT,length_L);
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
end
E= C1./((lambda(j)^5)*exp(term1-1));
end
loglog(lambda, E)
ylim([1*10^-1,1*10^9])
xlim([0, 2.5*10^1])
  1 件のコメント
Walter Roberson
Walter Roberson 2023 年 12 月 10 日
In order to produce that kind of graph, your expression would need some term that first increased in time and then decreased in time. I am not finding any term in your code that has that property ?

サインインしてコメントする。

回答 (1 件)

Torsten
Torsten 2023 年 12 月 9 日
Maybe
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
E(i,j)= C1./((lambda(j)^5)*exp(term1(i,j)-1));
end
%E= C1./((lambda(j)^5)*exp(term1-1));
end
instead of
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
end
E= C1./((lambda(j)^5)*exp(term1-1));
end
?
  4 件のコメント
Image Analyst
Image Analyst 2023 年 12 月 10 日
@Matthew Palermo for completeness, could you post your complete, corrected code? It might help other people. 🙂
Torsten
Torsten 2023 年 12 月 10 日
編集済み: Torsten 2023 年 12 月 10 日
I tried that earlier and got the same result
Strange. I get a similar result as in your graphic.
C1 = 3.742*10^8; % First constant W-micron^4/m^2
C2 = 1.4388*10^4; %Second constant microns-K
T = 100:100:6000; %Temperature in Kelvins
lambda = 0.1:0.1:25; %wavelength in microns
lengthT = length(T);
length_L = length(lambda);
E = zeros(lengthT,length_L);
for i = 1:lengthT
for j = 1:length_L
term1(i,j) = C2./(lambda(j)*T(i));
E(i,j)= C1./((lambda(j)^5)*exp(term1(i,j)-1));
end
%E= C1./((lambda(j)^5)*exp(term1-1));
end
loglog(lambda, E)
ylim([1*10^-1,1*10^9])
xlim([0, 2.5*10^1])

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMATLAB についてさらに検索

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by