Solving a complex system of differential equations
7 ビュー (過去 30 日間)
古いコメントを表示
I have a this differential equation system:
, where F is a function of time (t). But I am not sure whats the easiest way to solve it in MATLAB. Lets say for example:

M = [1,0.8;0.8,7]
K = [5,0;0,10]
D = [0.15,0;0,0.35]
F = [5*exp(i*5*t); 3.65*exp(i*5*t)]
q = [X; Y]
And we want to solve for q, which is X and Y.
0 件のコメント
採用された回答
Torsten
2023 年 11 月 15 日
編集済み: Torsten
2023 年 11 月 15 日
%q(1) = X, q(2) = Y, q(3) = Xdot, q(4) = Ydot
M = [1,0.8;0.8,7];
K = [5,0;0,10];
D = [0.15,0;0,0.35];
F = @(t)[5*exp(i*5*t); 3.65*exp(i*5*t)] ;
tspan = [0 1];
q0 = [0 1 1 0].';
fun = @(t,q)[[q(3);q(4)];inv(M)*(F(t)-(1i*D+K)*[q(1);q(2)])];
[T,Q] = ode45(fun,tspan,q0);
figure(1)
hold on
plot(T,real(Q(:,1)))
plot(T,imag(Q(:,1)))
hold off
figure(2)
hold on
plot(T,real(Q(:,2)))
plot(T,imag(Q(:,2)))
hold off
2 件のコメント
Torsten
2023 年 11 月 15 日
The first plot is for the real and imaginary part of q(1) = X, the second plot is for the real and imaginary part of q(2) = Y.
q(3) and q(4) are Xdot and Ydot, respectively (as written in the headline of the code).
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!