Compute correlations in 3D arrays
5 ビュー (過去 30 日間)
古いコメントを表示
%Random matrices
A=randi(100,374,374);
A_ = eye(size(A,[1 2]));
A(ones(size(A))&A_)=NaN;
B=randi(100,374,374);
B_ = eye(size(B,[1 2]));
B(ones(size(B))&B_)=NaN;
The following code computes correlation coeficient and p value from matrices A, B:
nn=374;
temp= ~eye (nn);
ii_all_conn = find(temp>0);
ii_uptri_conn = find(triu(temp,1)> 0);
ii_lotri_conn = find(tril(temp,-1)> 0);
%Corr plots up entries
figure, plot(A(ii_uptri_conn), B(ii_uptri_conn),'o');
[r,p]= corr(A(ii_uptri_conn), B(ii_uptri_conn));
title(['Upper connections - r = ' num2str(r) ' (p ' num2str(p) ')']);
%Corr plots low entries
figure, plot(A(ii_lotri_conn), B(ii_lotri_conn),'o');
[r,p]= corr(A(ii_lotri_conn), B(ii_lotri_conn));
title(['Lower connections - r = ' num2str(r) ' (p ' num2str(p) ')']);
Can I compute the same correlation and p-value in multidimensional arrays? E.g.
A_3D=randi(100,374,374,10);
B_3D=randi(100,374,374,10);
In the output, the first r and p values would correpond to the Pearson coeficient of A(:,:,1), B(:,:,1). and the tenth r and p values correpond to the Pearson coeficient of A(:,:,10), B(:,:,10)
0 件のコメント
採用された回答
Dyuman Joshi
2023 年 11 月 7 日
Run a for loop through the 3rd dimension -
A_3D = randi(100,374,374,10);
B_3D = randi(100,374,374,10);
s = size(A_3D,3);
[ru, pu, rl, pl] = deal(zeros(s,1));
for k = 1:s
[ru(k), pu(k), rl(k), pl(k)] = correlation(A_3D(:,:,k), B_3D(:,:,k));
end
%Upper triangle values
[ru pu]
%Lower triangle values
[rl pl]
function [Ru, Pu, Rl, Pl] = correlation(A, B)
A = modify(A);
B = modify(B);
temp= ~eye(size(A,[1 2]));
%% Logical indexing is faster than find()
ii_uptri_conn = triu(temp,1)> 0;
ii_lotri_conn = tril(temp,-1)> 0;
[Ru,Pu] = corr(A(ii_uptri_conn), B(ii_uptri_conn));
[Rl,Pl] = corr(A(ii_lotri_conn), B(ii_lotri_conn));
end
function in = modify(in)
temp = eye(size(in,[1 2]));
in(ones(size(in))&temp) = NaN;
end
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Creating and Concatenating Matrices についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!