Fitting a SimBiology model to data when you don't know the time of the Cmax (maximum concentration) can be challenging, but it's possible to handle this situation by using optimization techniques. One approach is to perform a global search to find the best parameter values that minimize the difference between the model prediction and the observed data, without assuming a specific time for Cmax. Here are the general steps to do this:
Define Your Model in SimBiology:
- First, make sure you have your SimBiology model properly defined with the parameters that you want to estimate during the fitting process. Ensure that you have appropriately linked your model to the observed data.
Create an Objective Function:
- You will need to create an objective function that quantifies the discrepancy between the model predictions and the observed data. In your case, this function should be based on the Cmax value. The objective function should take parameter values as inputs and return a measure of how well the model matches the data.
Implement a Search Algorithm:
- Since you don't know the time of Cmax, you can use an optimization algorithm that explores the parameter space globally. Genetic algorithms or particle swarm optimization are often used for such global optimization problems.
Set Up the Fitting Process:
- Use a global optimization function available in MATLAB, such as ga (genetic algorithm) or particleswarm, to perform the optimization. These functions allow you to search for parameter values that minimize the objective function.
Run the Fitting Process:
- Execute the optimization algorithm with your objective function and an initial guess for the parameters. The optimization algorithm will iteratively adjust the parameters to minimize the discrepancy between the model predictions and the data.
Analyze the Results:
- After the fitting process is complete, you can examine the estimated parameter values and the goodness of fit to assess how well the model aligns with the data. The estimated parameter values should provide information about the model parameters that produce the best fit to the data, including the time of Cmax.
Example of how to set up the fitting process using the ga function in MATLAB:
% Define the objective function
objectiveFunction = @(params) yourCustomObjectiveFunction(params, observedData);
% Set up optimization options
options = optimoptions('ga', 'MaxGenerations', 100, 'PopulationSize', 100);
% Perform the fitting using genetic algorithm
estimatedParams = ga(objectiveFunction, numParams, [ ], [ ], [ ], [ ], lb, ub, [ ], options);
% Now, you can analyze the results, including the estimated parameters
In this example, yourCustomObjectiveFunction is a function that calculates the Cmax value for the model prediction based on the parameter values and compares it to the observed Cmax value.