How do you solve a coupled ODE when one of the ODE results in a vector of length 3 and the other results in a scalar of length 1?

1 回表示 (過去 30 日間)
For instance, in the following example that I found online, if dz(2) were actually a vector, how would you modify this?
[v z] = ode45(@myode,[0 500],[0 1]);
function dz = myode(v,z)
alpha = 0.001;
C0 = 0.3;
esp = 2;
k = 0.044;
f0 = 2.5;
dz = zeros(2,1);
dz(1) = k*C0/f0*(1-z(1)).*z(2)./(1-esp*z(1));
dz(2) = -alpha*(1+esp*z(1))./(2*z(2));
end

採用された回答

Torsten
Torsten 2023 年 10 月 5 日
編集済み: Torsten 2023 年 10 月 5 日
All solution components have to be aggregated in one big vector z, and also the derivatives have to be supplied in this vector form. E.g. if the unknows were composed of a vector x of length 4 and a vector y of length 7, you had to work with vectors z and dz of length 4 + 7 = 11.
  4 件のコメント
Torsten
Torsten 2023 年 10 月 5 日
編集済み: Torsten 2023 年 10 月 5 日
Let x be a scalar and y a vector of length 2.
Let the equations be
dx/dt = x
dy1/dt = 2*y1
dy2/dt = 3*y2
with initial conditions
x(0) = 1,
y1(0) = 2,
y2(0) = 3.
Then you can set up the problem as
x0 = 1;
y10 = 2;
y20 = 3;
z0 = [x0;[y10;y20]];
tspan = [0 1];
[T,Z] = ode45(@fun,tspan,z0);
X = Z(:,1);
Y = Z(:,2:3);
figure(1)
plot(T,X)
figure(2)
plot(T,Y)
function dzdt = fun(t,z)
x = z(1);
y = z(2:3);
dxdt = x;
dydt = [2*y(1);3*y(2)];
dzdt = [dxdt;dydt];
end

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by