interpolation of coordinates in space using interp3

8 ビュー (過去 30 日間)
Alberto Acri
Alberto Acri 2023 年 10 月 1 日
回答済み: Torsten 2023 年 10 月 1 日
Hi! I have this coordinate set (C_new). I would like to add additional coordinates using interpolation.
load C_new
figure
plot3(P(:,1),P(:,2),P(:,3),'k*','Markersize',20);
hold on
plot3(C_new(:,1),C_new(:,2),C_new(:,3),'r.','Markersize',10);
hold off
axis equal
I'm proceeding as follows but I don't know if it's the right procedure:
X = C_new(:,1);
Y = C_new(:,2);
Z = C_new(:,3);
[Xq,Yq,Zq] = meshgrid(X,Y,Z);
Vq = interp3(X,Y,Z,V,Xq,Yq,Zq);
but what should I put for V?
  1 件のコメント
Dyuman Joshi
Dyuman Joshi 2023 年 10 月 1 日
You need the equation/relation between the coordinates to interpolate, V contains the values of the the function corresponding to (X,Y,Z).

サインインしてコメントする。

採用された回答

Voss
Voss 2023 年 10 月 1 日
編集済み: Voss 2023 年 10 月 1 日
interp3 is for interpolating a function of 3 variables, i.e., if you had a function f(X,Y,Z) that returns a value for each (X,Y,Z) then you could use interp3 to interpolate those values to new points in 3D space. In this case there is no function, only the points in 3D space, so you can define a parameterizing variable and use interp1 to interpolate each of your X, Y, Z in terms of that
load C_new
% original number of points:
n = size(C_new,1);
% number of points you want (change this as desired):
n_new = floor(n/2);
% distance between adjacent points:
d = sqrt(sum(diff(C_new,1,1).^2,2));
% cumulative distance around the ring, starting with point #1:
t = [0; cumsum(d)];
% new distances (equally-spaced) at which to calculate the new (X,Y,Z) coordinates:
t_new = linspace(t(1),t(end),n_new);
% interp1 C_new from t to t_new:
C_interp = interp1(t,C_new,t_new);
% plot:
figure
plot3(C_interp(:,1),C_interp(:,2),C_interp(:,3),'g.','Markersize',6);
hold on
plot3(C_new(:,1),C_new(:,2),C_new(:,3),'r.','Markersize',10);
axis equal

その他の回答 (1 件)

Torsten
Torsten 2023 年 10 月 1 日
Given two points
P1 = [1 3 4];
and
P2 = [3 6 -1];
you can connect them by a line
s = @(t) (1-t)*P1 + t*P2;
and choose points between them:
t = [0:0.2:1];
Pq = reshape(cell2mat(arrayfun(@(t)s(t),t,'UniformOutput',0)),3,[]).'
Pq = 6×3
1.0000 3.0000 4.0000 1.4000 3.6000 3.0000 1.8000 4.2000 2.0000 2.2000 4.8000 1.0000 2.6000 5.4000 -0.0000 3.0000 6.0000 -1.0000

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by