Runga-Kutta method in the matrix form

1 回表示 (過去 30 日間)
Ban
Ban 2023 年 8 月 31 日
コメント済み: Torsten 2023 年 8 月 31 日
Hi,
I have a set of differential eqns as: dV/dt = A*V, here, V = [V1 V2 V3] and A= [a11 a12 a13; a21 a22 a23; a31 a32 a33]. Value of A is so complex that writing down the eqns. in dV1/dt = ... dV2/dt = ... dV3/dt = ... is not convenient. So I need to solve this using Runga-Kutta method in the matrix form. I am trying the following:
V=zeros(length(t),3);
V(1,:)=[u0x, u0y, u0z];
Fx = @(t, V) A*V ;
for i=1: length(t)-1
K1 = ...
K2 = ...
K3 = ...
K4 =...
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
end
However, this gives the error - Dimensions of matrices being concatenated are not consistent.
Could you please suggest how do I move ahead?

回答 (1 件)

Torsten
Torsten 2023 年 8 月 31 日
移動済み: Torsten 2023 年 8 月 31 日
Supply your full code so that we can test it, not only dots for missing parts.
It should be obvious that
V(i+1) = V(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
must throw an error because your solution V is not a scalar, but a 3x1 vector.
  2 件のコメント
Ban
Ban 2023 年 8 月 31 日
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
X=zeros(length(t),3);
VX=zeros(length(t),3);
X(1,:)=[x0, y0, z0];
VX(1,:)=[u0x, u0y, u0z];
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(i));
K2 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(i)+h*K3);
VX(i+1) = VX(i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
vx_passive=VX;
plot(t,vx_passive,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);
hold on
Torsten
Torsten 2023 年 8 月 31 日
clear;
close all;
clc;
t0 = 0; %seconds
tf =20; %seconds
tspan=[t0 tf] ;
h=0.01;
x0=0;
y0=0;
z0=-0.5;
% Initial field velocity @t=0, x=0, z=0
u0x=exp(z0)*cos(x0-t0);
u0y=0;
u0z=exp(z0)*sin(x0-t0);
t = tspan(1):h:tspan(2);
VX=zeros(length(t),3).';
VX(:,1)=[u0x, u0y, u0z].';
Fx = @(t, VX) [1 0 1; 1 1 0; 1 0 1]*VX;
for i=1: length(t)-1
K1 = Fx(t(i),VX(:,i));
K2 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K1);
K3 = Fx(t(i)+0.5*h, VX(:,i)+0.5*h*K2);
K4 = Fx(t(i)+h, VX(:,i)+h*K3);
VX(:,i+1) = VX(:,i) + (1/6)*(K1+2*K2+2*K3+K4)*h;
end
plot(t,VX,'LineWidth',2)
xlabel('$t$','FontSize',20,'FontWeight','bold', 'Interpreter','latex');
ylabel('$vx$', 'FontSize',20,'FontWeight','bold', 'Interpreter','latex');
set(gca,'FontSize',15);

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by