Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
26 ビュー (過去 30 日間)
古いコメントを表示
Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
f^'=1,f=S,θ^'=-r_1 [1+θ],ϕ^'=-r_2 [1+ϕ] at η=0
f^'=0,f^''=0,θ=0,ϕ=0 as η→∞
1 件のコメント
vijayakumar
2024 年 10 月 30 日 7:31
how to set MATLAB code for velocity slip and temperature slip boundary condition for kelller box method please help me out
at eta=0, f(eta)=0, f^'(eta)=SF*f^''(eta), theta=1+ST*theta^'(eta)
at eta=infinite, f^'=0, theta=0
回答 (2 件)
Mrutyunjaya Hiremath
2023 年 8 月 6 日
% Define parameters
r_1 = 0.1;
r_2 = 0.2;
S = 2.0;
% Define the differential equations
% y(1) = f, y(2) = f', y(3) = θ, y(4) = ϕ
ode_system = @(eta, y) [y(2); 1; y(3); y(4)];
% Define the boundary conditions at η = 0
initial_conditions = [S, 1, 0, 0];
% Define the boundary conditions at η → ∞
eta_infinity = 100; % Choose a large value
final_conditions = [0, 0, 0, 0];
% Solve the differential equations
[eta, result] = ode45(ode_system, [0, eta_infinity], initial_conditions);
% Extract the solutions
f = result(:, 1);
f_prime = result(:, 2);
theta = result(:, 3);
phi = result(:, 4);
% Plot the solutions
subplot(2, 2, 1);
plot(eta, f);
xlabel('η');
ylabel('f');
title('f vs. η');
subplot(2, 2, 2);
plot(eta, f_prime);
xlabel('η');
ylabel("f'");
title("f' vs. η");
subplot(2, 2, 3);
plot(eta, theta);
xlabel('η');
ylabel('θ');
title('θ vs. η');
subplot(2, 2, 4);
plot(eta, phi);
xlabel('η');
ylabel('ϕ');
title('ϕ vs. η');
7 件のコメント
Torsten
2023 年 8 月 7 日
It should be clear that we won't program this for you.
If you have a boundary value problem as above, you can use the MATLAB tools "bvp4c" or "bvp5c".
If your problem is an assignment, you will have to start programming it in MATLAB or make a google search whether you find a MATLAB code that fits your needs.
Thiripura Sundari
2024 年 9 月 27 日
Good evening Professor, Shall we give matlab bvp4c code in jeffrey fluid thank you.
Santosh Devi
2024 年 2 月 27 日
f^''' (η)+ff^'' (η)-(f^' (η))^2+Mf^' (η)-λf(η)=0
■θ^'' (η)+Pr[f(η)θ^' (η)-b/(u_w^2 ) ηθ(η)+Ec(f^'' (η))^2+Q_0 θ(η)]=0
■ϕ^'' (η)+Sc[f(η) ϕ^' (η)-Kϕ(η)]=0
■f(0)=s,f^' (0)=1,θ(0)=1,ϕ(0)=1
■f^' (∞)→0,θ(∞)→0,ϕ(∞)→0
5 件のコメント
Thiripura Sundari
2024 年 10 月 22 日
Good afternoon Professor, can please give fourth order jeffrey fluid using keller box method
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!