best approximation for double numbers

3 ビュー (過去 30 日間)
Francesco Pio
Francesco Pio 2023 年 7 月 21 日
コメント済み: Walter Roberson 2023 年 7 月 21 日
I have the following function which has an asymptote for y = 1 :
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )));
So, so the function should have a value < 1 for all x.
Also using "format long", of course, from a certain value of x onwards, the result of the function is approximated to 1.
format long
double(f(400)) % ans = 1
Is there a way to get an approximation to the exact value for even larger x? Or should I settle for this approximation?

採用された回答

VBBV
VBBV 2023 年 7 月 21 日
format long
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
vpa(f(400),100)
ans = 
0.9999999999999999981792806433707777978855866136633285567221016451791545277454316141363423975013892837
  2 件のコメント
VBBV
VBBV 2023 年 7 月 21 日
Try using vpa for large values of x
Walter Roberson
Walter Roberson 2023 年 7 月 21 日
syms f(x)
syms x
f(x) = 1 / (1 + exp(-((x + 8.4730) / 10 )))
f(x) = 
f1 = simplify(expand(1-f))
f1(x) = 
double(f1(400))
ans = 1.8207e-18
fplot(f1,[500 600])
f1n = matlabFunction(f1)
f1n = function_handle with value:
@(x)1.0./(exp(x./1.0e+1+8.473e-1)+1.0)
fplot(f1n, [500 600])
f1 gives you an idea of how quickly the value approaches 1, by showing you how quickly the difference between 1 and f falls. f1n shows that a numeric approximation (instead of a symbolic) of 1-f is still not bad at all in this kind of range.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by