what should i do with this error on cross validation?
1 回表示 (過去 30 日間)
古いコメントを表示
i newer to matlab and i want to perform cross validation on my image dataset and i use below code for it:
path_to_images = "*\Rice_Image_Dataset";
image_datastore = imageDatastore(path_to_images, "IncludeSubfolders", true, "LabelSource", "foldernames");
% Split the data into train, validation, and test sets
[train, validation, test] = splitEachLabel(image_datastore, 0.6, 0.2, 0.2, 'randomized');
numFolds = 5;
cv = cvpartition(train.Labels, 'KFold', numFolds);
nets = cell(1, numFolds);
accuracies = zeros(1, numFolds);
for i = 1:numFolds
trainIdx = training(cv, i);
valIdx = test(cv, i);
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
rsz_train = augmentedImageDatastore([224 224 3], trainData);
rsz_val = augmentedImageDatastore([224 224 3], valData);
augmentedTrainDatastore = augmentedImageDatastore([224 224 3], trainData, 'ColorPreprocessing', 'gray2rgb');
augmentedValDatastore = augmentedImageDatastore([224 224 3], valData, 'ColorPreprocessing', 'gray2rgb');
opts = trainingOptions("sgdm", ...
"ExecutionEnvironment", "auto", ...
"InitialLearnRate", 0.01, ...
"MaxEpochs", 5, ...
"MiniBatchSize", 64, ...
"Shuffle", "every-epoch", ...
"ValidationFrequency", 70, ...
"Plots", "training-progress", ...
"ValidationData", rsz_val, ...
"Momentum", 0.9);
[net, traininfo] = trainNetwork(augmentedTrainDatastore, lgraph_1, opts);
nets{i} = net;
true_val_labels = valData.Labels;
pred_val_labels = classify(net, augmentedValDatastore);
accuracies(i) = mean(true_val_labels == pred_val_labels);
end
% Compute average accuracy over all folds
averageAccuracy = mean(accuracies);
but i recieved the following error:
Array formation and parentheses-style indexing with objects of class 'matlab.io.datastore.ImageDatastore' is not allowed. Use objects of class
'matlab.io.datastore.ImageDatastore' only as scalars or use a cell array.
could you plz help me with that.
0 件のコメント
採用された回答
Aniketh
2023 年 7 月 12 日
Hi Amir, to resolve the error, modify the following lines in your code:
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
to
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
By using image_datastore instead of train, you ensure that the subset function operates on the imageDatastore object as intended.
Hope that helped your case!
0 件のコメント
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!