give me comment to the coding lines, like what do they do
1 回表示 (過去 30 日間)
古いコメントを表示
%Comment 1:
load iris.dat
%Comment 2:
setosaIndex = iris (:,5)==1;
versicolorIndex = iris (:,5) ==2;
virginicaIndex = iris (:, 5) ==3;
%Comment 3:
setosa = iris (setosaIndex, :) ;
versicolor = iris (versicolorIndex,:);
virginica - iris (virginicaIndex, :);
%Comment 4:
Characteristics = ('sepal length', 'sepal width', 'petal
length', 'petal width');
pairs = (1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
%Comment 5:
for 1 = 1:6
x = pairs (i, 1);
y = pairs (1, 2);
IrisData subplot (2,3,1)
plot ([setosa (:,x) versicolor (:,x) virginica (:,*)l, setosa (:,y) versicolor (:,y) virginica (:,y)]
xlabel (Characteristics (x))
ylabel (Characteristics (y))
end
saveas (IrisData, 'IrisData. jpg');
%Comment 6;
Nc = 3;
M = 2.0;
maxIter 100;
minImprove = Le-6;
%Comment 7;
clusteringOptions = (M maxIter minImprove truel;
%Comment 8:
[centers, U] - fcm(iris, Ne, clusteringOptions) ;
%Comment 9:
for i = 1:6
ClusteredIrisData=subplot. (2, 3, i);
for i = 1:Nc
X = pairs (i, 1);
Y = pairs (i, 2);
text (centers (j,×), centers (j, y) , int2str (j) , 'Fontweight', 'bold');
end
end
%Comment 10:
saveas (ClusteredIrisData, 'clusteredirisData. jpg' ) ;
0 件のコメント
回答 (1 件)
Vishnu
2023 年 7 月 12 日
Hi RAHMAN,
Here are comments explaining what each line of code does:
%Comment 1: Load the iris.dat dataset
load iris.dat
%Comment 2: Create logical indices for each class of iris flowers
setosaIndex = iris(:, 5) == 1;
versicolorIndex = iris(:, 5) == 2;
virginicaIndex = iris(:, 5) == 3;
%Comment 3: Extract data for each class of iris flowers
setosa = iris(setosaIndex, :);
versicolor = iris(versicolorIndex, :);
virginica = iris(virginicaIndex, :);
%Comment 4: Define characteristics and pairs of characteristics for plotting
Characteristics = {'sepal length', 'sepal width', 'petal length', 'petal width'};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
%Comment 5: Plot data for each pair of characteristics
for i = 1:6
x = pairs(i, 1);
y = pairs(i, 2);
IrisData = subplot(2, 3, 1);
plot([setosa(:, x) versicolor(:, x) virginica(:, x)], [setosa(:, y) versicolor(:, y) virginica(:, y)]);
xlabel(Characteristics{x});
ylabel(Characteristics{y});
end
saveas(IrisData, 'IrisData.jpg');
%Comment 6: Set parameters for fuzzy C-means clustering
Nc = 3;
M = 2.0;
maxIter = 100;
minImprove = 1e-6;
%Comment 7: Define clustering options
clusteringOptions = [M maxIter minImprove true];
%Comment 8: Perform fuzzy C-means clustering on the iris dataset
[centers, U] = fcm(iris, Nc, clusteringOptions);
%Comment 9: Plot clustered data for each pair of characteristics
for i = 1:6
ClusteredIrisData = subplot(2, 3, i);
for j = 1:Nc
X = pairs(i, 1);
Y = pairs(i, 2);
text(centers(j, X), centers(j, Y), int2str(j), 'Fontweight', 'bold');
end
end
%Comment 10: Save the plot of clustered iris data
saveas(ClusteredIrisData, 'clusteredirisData.jpg');
These comments provide a brief explanation of each line of code and its purpose within the script.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Matrices and Arrays についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!