why mse is 0.00 for three different data sets?
3 ビュー (過去 30 日間)
古いコメントを表示
Please let me know what is wrong in matalb code given below because it is giving mean square error is for three different data sets,
clear, clc, close all
data = readtable('c:/matlab/study_data.csv');
X = data(:, 1:end-1); % Select all columns except the last one
y = data(:, end); % Select the last column
numGroundTruth = numel(y);
numTrainingSamples = round(0.8 * numGroundTruth);
trainingIndexes = randsample(numGroundTruth, numTrainingSamples);
testIndexes = setdiff((1:numGroundTruth)', trainingIndexes);
X_train = X(trainingIndexes, :);
X_test = X(testIndexes, :);
y_train = y(trainingIndexes, :);
y_test = y(testIndexes, :);
% Create a Random Forest classifier
rf_classifier = TreeBagger(100, table2array(X_train), table2array(y_train), 'OOBPrediction', 'On');
predicted = predict(rf_classifier, table2array(X_train));
YY = categorical(predicted);
ZZ = str2double(cellstr(YY));
Z = table2array(y_train);
oob_mse = immse(Z, ZZ);
disp(sprintf('Out-of-Bag Mean Square Error: %.4f', oob_mse));
Thanks for your kind help.
Sanchit
0 件のコメント
回答 (1 件)
Menika
2023 年 7 月 10 日
Hi,
A possible problem with the above code can be that the predicted variable is being calculated using the training data X_train, rather than the test data X_test. Since the MSE is calculated using the training data, it will always be zero because the model is predicting the same data it was trained on. You can try replacing X_train with X_test when calculating the predicted variable.
Hope it helps!
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Classification Ensembles についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!