Implement the "total variation distance" (TVD) in Matlab

36 ビュー (過去 30 日間)
Sim
Sim 2023 年 7 月 3 日
編集済み: Bruno Luong 2023 年 8 月 4 日
I am trying to implement the Total variation distance of probability measures (TVD) in Matlab.
Would it be correct to use the max function, in order to calculate the "supremum" of the TVD equation (here below)?
My attempt:
% Input
A =[ 0.444643925792938 0.258402203856749
0.224416517055655 0.309641873278237
0.0730101735487732 0.148209366391185
0.0825852782764812 0.0848484848484849
0.0867743865948534 0.0727272727272727
0.0550568521843208 0.0440771349862259
0.00718132854578097 0.0121212121212121
0.00418910831837223 0.0336088154269972
0.00478755236385398 0.0269972451790634
0.00359066427289048 0.00110192837465565
0.00538599640933573 0.00220385674931129
0.000598444045481747 0
0.00299222022740874 0.00165289256198347
0 0
0.00119688809096349 0.000550964187327824
0 0.000550964187327824
0.00119688809096349 0.000550964187327824
0 0.000550964187327824
0 0.000550964187327824
0.000598444045481747 0
0.000598444045481747 0
0 0
0 0.000550964187327824
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0.000550964187327824
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0.00119688809096349 0.000550964187327824];
P = A(:,1);
Q = A(:,2);
% Total variation distance (of probability measures)
d = max(abs(P-Q))
d = 0.1862

採用された回答

Bruno Luong
Bruno Luong 2023 年 8 月 4 日
編集済み: Bruno Luong 2023 年 8 月 4 日
Supremum is very often implemented by max, since one can only list or compute a finite set on computer.
However your formula d = max(abs(P-Q)) is not correct to compute TVD.
According to this wiki page; correct formula is given bellow "When Ω is countable"
d = 0.5 * norm(P-Q,1)
or
d = 0.5 * sum(abs(P-Q));
  8 件のコメント
Bruno Luong
Bruno Luong 2023 年 8 月 4 日
編集済み: Bruno Luong 2023 年 8 月 4 日
Don't use the brute force implementation of the initial definition for any discrete pdf with more than 20 values (n = cardinal of Omega), rather use
dFormula = 0.5 * norm(P-Q,1)
The for-loop I made is just to illustrate the correctness of the formula. Just like no-one would computes the determinant of matrix 30 x 30 using Leibniz formula.
Sim
Sim 2023 年 8 月 4 日
Ah ok..great..!! Many many thanks!
Then, I will use:
dFormula = 0.5 * norm(P-Q,1)

サインインしてコメントする。

その他の回答 (1 件)

Debadipto
Debadipto 2023 年 8 月 4 日
Hi Sim,
Upon searching, I found the exact question being asked on stackoverflow (I'm assuming it was posted by you only), where somebody has already answered the question. I am attaching the link to that answer for future reference:
  1 件のコメント
Sim
Sim 2023 年 8 月 4 日
編集済み: Sim 2023 年 8 月 4 日
Yes exactly! :-)

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by