solving second order differential equation for 1D wave with parameter by shooting method

3 ビュー (過去 30 日間)
Gabriela
Gabriela 2023 年 6 月 29 日
コメント済み: Gabriela 2023 年 6 月 29 日
Hi I really need help writing a MATLAB code that uses the shooting method to integrate d^2f/dx^2 = -(w^2)*y/180,625 while improving the parameter w by (w_n+1)^2 = (w_n)^2 -f((w_n)^2)/[Delta*f/Delta*w^2 @w_n]. My initial guess is w0=1,570.79645. I'm struggling with turning my second order differential equation into a first order to solve in MATLAB while also integrating with parameter w that improves with each iteration.
  4 件のコメント
Torsten
Torsten 2023 年 6 月 29 日
編集済み: Torsten 2023 年 6 月 29 日
You can't have only two boundary conditions (f(0) = f(L) = 0) in a second-order differential equation with an unknown parameter omega . You must have three.
Is this an eigenvalue problem ? Something similar to this example:
?
Gabriela
Gabriela 2023 年 6 月 29 日
@Torsten I think another boundary condition is f= 425/lamda = w/(2pi) = 277.778n

サインインしてコメントする。

回答 (1 件)

Mudit Kumar Bhugari
Mudit Kumar Bhugari 2023 年 6 月 29 日

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by