フィルターのクリア

using quiver to create a vector field for an equation with only 1 variable.

5 ビュー (過去 30 日間)
Elijah Jones
Elijah Jones 2023 年 6 月 27 日
コメント済み: Elijah Jones 2023 年 6 月 27 日
I have an equation which i am trying to use quiver to create a vector field for. the equation can be defined as this. yprime = alpha*y - beta*y.^2 - H where H = ((y.^3)*p)./((y.^3)+q) and alpha and beta are constants. so are p and q. everywhere I look though quiver is used to define problems with two equations. is there a way to use it for this equation?

回答 (1 件)

KSSV
KSSV 2023 年 6 月 27 日
alpha = rand ;
beta = rand ;
p = rand ;
q = rand ;
y = linspace(0,1) ;
yprime = alpha*y - beta*y.^2-(((y.^3)*p)./((y.^3)+q)) ;
dyprime = gradient(yprime) ;
plot(y,yprime)
hold on
quiver(y,yprime,yprime,dyprime)
  2 件のコメント
Elijah Jones
Elijah Jones 2023 年 6 月 27 日
編集済み: Elijah Jones 2023 年 6 月 27 日
alpha = .75 ;
beta = .1 ;
p = 1.5 ;
q = 1.25 ;
y = linspace(0,1) ;
yprime = alpha*y - beta*y.^2-(((y.^3)*p)./((y.^3)+q)) ;
dyprime = gradient(yprime) ;
plot(y,yprime)
hold on
quiver(y,yprime,yprime,dyprime)
this is the stuff i have to put into this equation. it doesn't look correct. if this makes any difference yprime is also dy/dt. differential equation just doesn't have any t's in it. The direction field should though. I'm looking for the slop field that is y(t) using yprime above.
Elijah Jones
Elijah Jones 2023 年 6 月 27 日
the direction field should be on of a logistic function

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeVector Fields についてさらに検索

タグ

製品


リリース

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by